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Dynamics of Domain Growth in Self-Assembled Fluid Vesicles
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The dynamics of phase separation in multicomponent bilayer fluid vesicles is investigated by means
of large-scale dissipative particle dynamics. The model explicitly accounts for solvent particles, thereby
allowing for the very first numerical investigation of the effects of hydrodynamics and area-to-volume
constraints. We observed regimes corresponding to coalescence of flat patches, budding and vesicu-
lation, and coalescence of caps. We point out that the area-to-volume constraint has a strong influence
on crossovers between these regimes.
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Apart from partitioning the inner and outer environ-
ments of the cell, biomembranes also act as support for
complex and specialized molecular machinery, crucial
for various physiological functions and transmembrane
transport [1]. It is believed that membranes maintain in-
plane compositional organization that is essential for its
function. Though biological membranes are very complex
and can in general be far from equilibrium, knowledge of
the equilibrium properties of simple model membranes
will be extremely useful in providing understanding of
this molecular machinery. Such a study should also be
essential for developing new applications involving lip-
osomes. This has recently resulted in a surge of theoreti-
cal and experimental investigations on domain formation
in multicomponent vesicles [2–10].

The dynamics of in-plane demixing of multicompo-
nent vesicles into coexisting phases is richer than its
counterpart in bulk systems. There are several reasons
for this: (i) the phase separation process is strongly
coupled to the shape dynamics of the vesicle, (ii) the
viscosities of the lipid bilayer and that of the embedding
solvent are different, and (iii) the membrane can be
impermeable to solvent, resulting in a constraint on the
vesicle area-to-volume ratio. The purpose of this Letter is
to investigate the effect of the above on the dynamics of
multicomponent fluid vesicles.

Phase separation of vesicles following a quench to the
two-phase region has previously been considered by
means of a generalized time-dependent Ginzburg-
Landau model [4] and a dynamic triangulation Monte
Carlo model [5–7]. The later study showed a marked
departure of the phase separation in multicomponent fluid
vesicles from their Euclidean counterparts as a result of
coupling between curvature and composition. In particu-
lar, it was shown that at intermediate times, the familiar
labyrinthlike spinodal network breaks up into isolated
domains [5,6]. In the case of a tensionless closed vesicle,
at late time these domains reshape into buds connected to
the parent vesicle by very narrow necks [7]. Further
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domain growth proceeds via Brownian motion of these
buds and their coalescence.

Recent advances in experimental techniques, such as
the two photon fluorescence and confocal microscopy, has
made it possible to study phase separation on fluid vesicles
[8–10]. These experiments reported structures with many
domains which are more akin to caps than fully devel-
oped buds. A natural question then is this: Does coarsen-
ing in multicomponent fluid vesicles proceed via a kinetic
pathway similar to that predicted by the recent simu-
lations?

Previous studies of the dynamics of phase separation in
fluid membranes did not take into account the following
important features of a real lipid vesicle: (i) the presence
of solvent, (ii) the constraint of area-to-volume ratio, and
(iii) the freedom to vesiculate. We report here the first
large-scale simulation of phase separation dynamics of a
fluid vesicle model that accounts for these features. This
study, based on dissipative particle dynamics (DPD),
finds that the dynamics at all times is affected by the
presence of the solvent, and that the late time shape of the
vesicle corresponds to that of a surface decorated with
caps.

Within the DPD approach [11], the vesicle is formed
from the self-assembly of individual particles in an ex-
plicit solvent. The model parameters are chosen such that
the membrane is impermeable to the solvent, thus allow-
ing us to investigate the effect of conservation of both
vesicle’s area and encapsulated volume. A lipid particle is
modeled as a simple flexible amphiphilic chain built with
four DPD particles: one hydrophilic particle, simulating
the lipid head group (h), and three hydrophobic particles,
simulating the lipid hydrophobic part (t). The heads of the
two types of lipids are denoted by hA or hB, and their tails
are denoted by tA or tB. Water particles are denoted byW.
We focus on the case where interactions are symmetric
under the exchange of A and B components, thus ensuring
no explicit coupling between local composition and local
curvature.
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FIG. 1 (color online). Snapshots of a phase separating vesicle
in case I at (a) t � 100� and (b) 2000�. (c) is a slice taken at
5000�.
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The position and velocity of each particle are denoted
by �ri; vi�. Their time evolution is governed by Newton’s
equations of motion [12]. There are three types of pair-
wise additive forces acting on a particle j by a particle i:
(i) a conservative force, F�C�

ij ; (ii) a dissipative force, F�D�
ij ;

(iii) a random force, F�R�
ij . The conservative force between

two particles i and j is given by F�C�
ij � aij!�rij�nij,

where we choose !�r� � 1� r=rc for r � rc and !�r� �
0 for r > rc such that the forces are soft and repulsive.
Here rij � rj � ri, nij � rij=jrijj, and rc is the cutoff
radius for the interaction. The hydrophobic and hydro-
philic interactions emerge from the relative interaction
strengths aij. With this, the parameters chosen for the
simulation are

aij �
�
rc

0
BBBBBBB@

hA tA W hB tB
hA 25 200 25 100 200
tA 200 25 200 200 100
W 25 200 25 25 200
hB 100 200 25 25 200
tB 200 100 200 200 25

1
CCCCCCCA
; (1)

where � sets the energy scale. The interaction parame-
ters are chosen such that the amphiphiles self-assemble
into bilayers and the two types of lipids are in the strong
segregation regime. A lipid particle integrity is en-
sured via a harmonic interaction between consecutive
monomers within a chain given by F�S�

i;i�1 � �C�1�
ri;i�1=b�ni;i�1, where C is a positive spring constant,
and b is a preferred bond length. We use b � 0:45rc and
C � 100�. The dissipative force originating from ‘‘fric-
tion’’ between particles is given by F�D�

ij � ��ij!
2�rij��

�nij 	 vij�nij, where �ij is a friction parameter and vij �
vj � vi. The random force is given by F�R�

ij �

�ij!�rij��ij��t�
�1=2nij, where �t is the time step in units

of � � �mr2c=��1=2, withm being the mass of a single DPD
particle. All particles in our simulation have the same
mass. Here, �ij is a symmetric random variable with zero
mean and unit variance, uncorrelated for different pairs
of particles and at different times. The dissipative and
random forces are related to each other through the
fluctuation dissipation theorem, leading to the relation
�ij � �2

ij=2kBT. Unless otherwise specified, we used a
fixed value �ij � � for all interacting pairs. The pairwise
nature of the dissipative and random forces ensures local
momentum conservation leading to correct long-range
hydrodynamics [13].

In our simulation the following parameters were used:
� � 3:0��3m=r2c�

1=4, �t � 0:05�, and kBT � �. With the
parameters chosen, the estimated bending modulus, �

10kBT, and line tension, �
 10�17 J= m, are in reason-
able agreement with estimates for lipid membranes [14].
We use 16 000 lipid chains in a simulation box of 80�
80� 80r3c with DPD-particle number density of 3r�3

c .
The number of water particles inside the vesicle, when
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it is not deflated, is about 138 400. The total number of
DPD particles corresponds to 1 536 000 [15].

Bilayers and vesicles can be self-assembled in a DPD
simulation [16,17]. In order to save computer time, we
prepare our vesicles starting from an almost closed con-
figuration, composed of a single lipid component, and
allow it to equilibrate. This approach allows for the
equilibration of the lipid surface density within the two
monolayers through the edge of the membrane. We find
that the vesicle closes within about 50 000 DPD steps.
Within the parameters of the model used here, we found
that the number of solvent particles inside the vesicle and
the number of lipid particles in the inner and outer leaves
of the vesicle remain constant. This implies that the
vesicle is impermeable to the solvent and flip-flop events
are rare. The vesicle prepared in this manner is found to
be nearly spherical with about 140 000 solvent particles
inside it.We refer to configurations with this inner volume
as case I. A vesicle with excess area can then be prepared
by transferring a certain amount of solvent particles from
its inner to outer regions. We refer to the equilibrated
configurations obtained after 20% of the inner solvent
particles are transferred as case II. We found that in
case II, as well as in case I, the solvent density is the
same inside and outside the vesicle.

To study the phase separation, we randomly label each
lipid particle in the bilayer as type A or B, such that the
relative composition in each layer is the same. Coarsening
is subsequently monitored by computing the distribution
of cluster sizes of the minority component and the total
interface length between the domains. We will focus on
the case of off-critical quenches with the volume fraction
of the B component equal to 0.3.

Snapshots of the time evolution of two component
vesicles in cases I and II are shown in Figs. 1 and 2,
respectively. As shown in Fig. 1(c), domains on either side
of the membrane are in register. The interlayer alignment
is maintained since the early stages of the phase separa-
tion dynamics. The net interface length is shown in Fig. 3.
During relatively early times, in both cases I and II,
domains are flat circular patches. The net interface
length, L�t�, during this regime is independent of the
area-to-volume ratio and has the form L�t� 
 t�", with
" � 0:3, as shown in Fig. 3. In this regime, the number of
clusters on the vesicle, Nc, is also found to obey a power
law, Nc 
 t�$, with $ � 2=3. This is depicted in Fig. 4.
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FIG. 2 (color online). Snapshots of a phase separating vesicle
in case II. Snapshots from left to right are at t �
100�; 400�; 1000�, and 4000�, respectively. Analysis shows
that the detached objects are full vesicles.
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Since the amount of A and B components on the mem-
brane are conserved, we haveNc�t� 
AB=R2�t�, where R
is the average domain size and AB is the total area
occupied by the B patches. Since the patches are flat,
R�t� 
AB=L�t�. Thus one expects $ � 2". The data
shown in Figs. 3 and 4 are consistent with this relation.
If the diffusion coefficient of disks moving on the mem-
brane depends on the domain size as Dd 
 1=R�t�, then
coalescence of domains leads to " � 1=3 and $ � 2=3
[18]. These exponents can also be the result of
evaporation-condensation mechanism, as predicted by
Lifshitz and Slyozov [19]. However, we could monitor
many events of patch coalescence in our simulation. We
thus believe that the mechanism of domain growth during
this regime is coalescence of patches [20].

After about t � 400�, the dynamics in cases I and II
clearly depart from each other, as shown in Fig. 3. In
case I, although there are some caps formed, coarsening
proceeds mainly through coalescence of flat circular
patches (see Fig. 1). Further capping is suppressed by
the lateral tension on the membrane due to volume con-
straint. Similar capping-induced tension was also seen in
earlier Monte Carlo simulations [6]. In case II, where
there is more excess area, domains reshape into caps.
The presence of excess area allows a fraction of the
caps to further reshape into buds which then vesiculate.
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FIG. 3 (color online). Net interface length as a function of
time. Solid curves correspond to case I with high line tension
(blue or middle curve), case II with high line tension (red or
bottom curve), and case II with low line tension (green or top
curve). See text for corresponding interactions. The dashed line
and dash-dotted lines have slopes 0.3 and 4=9, respectively. In
the inset, the number of vesiculated domains is shown as a
function of time for case II with high line tension. The arrows
point to the time regime during which budding and vesiculation
occur in case II with high line tension.
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The buds vesiculate during a short time, implying that the
energy barriers involved are very small. We confirm this
by performing simulations on a vesicle with large excess
area having a single B component domain occupying
12% of the total area. Once the bud is formed, it is found
to vesiculate within a time period of 10�. This budding
and vesiculation results in a marked decrease in the net
interface length L�t� over a short period of time, as shown
in Fig. 3. A pinching mechanism of vesicles was recently
studied in detail using DPD simulations [17].

All detached vesicles are composed of the B compo-
nent. Budding occurs towards both inner and outer re-
gions of the vesicles, although most buds are found in the
outer region. Inward budding is due to the bilayer nature
of the vesicles and cannot be observed if the vesicle is
modeled by a single surface. In the absence of explicit
coupling between mean curvature and composition, in-
ward vesiculation of a B domain results when the area of
the domain on the inner monolayer exceeds its area on the
outer monolayer.

Vesiculation results in a reduction of area-to-volume
ratio of the parent vesicle leading it to acquire a more
spherical shape. The lateral tension resulting from this
prevents further increase in the curvature of caps.
Coarsening now proceeds via coalescence of these caps.
Since patch and cap coalescence, in a viscous medium,
leads to the same exponent, $, we do not see any marked
change in the behavior of the curve shown in Fig. 4 for
case II. During this regime, the net interface length L

t0:4, as shown in Fig. 3. The exponent " � 0:4 is between
that due to coalescence of flat patches, i.e., " � 1=3, and
that due to coalescence of buds having an interface length
independent of the bud size, i.e., " � 2=3 [7]. As can be
seen in Fig. 2, domains remaining on the vesicle typically
have a shape closer to a hemispherical cap than a com-
plete bud. In this case, the average interface length of a
cap lc 
 ��a=��1=3, where a is the cap area. In the absence
of further vesiculation, Nca is a constant of time. We thus
obtain for the net interface length L
 Nclc 
 t

�4=9, con-
sistent with our numerical results shown in Fig. 3. We
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FIG. 4 (color online). Number of clusters on the vesicle as a
function of time. Curves correspond to case II with high line
tension (red or bottom curve), case I with high line tension
(blue or middle curve), and case II with low line tension (green
or top curve). The slope of the dashed line is 2=3.
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FIG. 5 (color online). Snapshots sequence for case II, with
line tension lower than in Fig. 2. Snapshots from left to right
correspond to t � 1200, 3700, and 7500�, respectively.
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should emphasize that this exponent is the result of hy-
drodynamic interactions manifested in the viscous drag
experienced by caps. In the absence of an embedding
solvent, cap coalescence yields slower domain growth,
L
 t�1=3.

Now, let us discuss the effect of line tension on domain
growth in case II. For a given B cap of area a, surrounded
by the A phase, the bending energy of the cap scales with
its radius of curvature, r, as �a=r2. Since the perimeter of
the domain decreases with decreasing r, the cap adopts a
shape with finite curvature. The domain area beyond
which capping occurs is around 4'�2=�2. Let t1 be the
time required to reach this capping regime. Beyond t1,
domain growth proceeds via cap coalescence. In the
presence of enough excess area, as in case II, this coales-
cence may lead to caps with an interface length compa-
rable to the thickness of the bilayer.Vesiculation may then
proceed [17].

For a � and �, there is an area of the cap around
16'�2=�2 beyond which a complete bud is formed, pro-
vided that there is enough excess area. Let t2 be the
average time necessary to reach this area. During the
period between t1 and t2, growth should be mediated by
coalescence of caps. In case II, discussed above, t2 � t1 is
too short to numerically detect this regime. We therefore
performed another set of simulations with a reduced
value of the line tension, achieved by choosing the inter-
action parameter aij for tAtB and hAhB pairs to be 50�=rc.
Corresponding snapshots are shown in Fig. 5. As can be
seen from this figure, vesiculation does not occur even at
very late times. However, well defined caps with finite
curvature are prominent. The net interface length shows a
clear crossover between the patch coalescence regime and
caps coalescence regime, as shown in Fig. 3.

In summary, we presented here the very first study of
phase separation dynamics of self-assembled bilayer fluid
vesicles with hydrodynamic effects. We found rich dy-
namics with crossovers that depend strongly on area-to-
volume ratio and line tension between the two coexisting
phases. In particular, we found that vesiculation, when it
happens, occurs during a short period of time. Another
feature that was not possible to account for in earlier
simulations but has important consequences is the volume
constraint. As a result of tension induced by this con-
straint, the main vesicle eventually acquires a spherical
shape decorated with caps, irrespective of initial area-to-
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volume ratio, a result seemingly born out of recent experi-
ments [8–10]
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