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Anomalous Fluid Transport in Porous Media Induced by Biofilm Growth
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Magnetic resonance measurements of the transition from normal to anomalous hydrodynamic
dispersion in porous media due to biological activity are presented. Fractional advection-diffusion
equations are shown to provide models for the measured impact of biofilm growth on porous media

transport dynamics.
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The impact of microbial activity, particularly surface
attached biofilms, on the transport of fluids in porous
systems is relevant to fields as seemingly diverse as geo-
physics and medicine [1]. Few direct experimental data
on the impact of bioactivity on transport dynamics in
three-dimensional media are available due to sample
opacity. Noninvasive magnetic resonance microscopy
(MRM) [2] directly measures length and time scale de-
pendent dynamics in porous media [3,4]. Here we show
by direct measurement of the propagator, i.e., the dis-
placement conditional probability [5] or van Hove scat-
tering function [2], the transition from normal to
anomalous hydrodynamic dispersion as a function of
bioactivity. Microbial activity transforms the porous me-
dia from a homogeneous to a heterogeneous structure,
increasing system complexity as defined in terms of dy-
namics [6]. Continuous time random walk (CTRW) based
fractional advection-diffusion equation (ADE) models
which generate anomalous or fractional dynamics [7-9]
are compared to the measured dynamics in both the
propagator displacement space and the Fourier reciprocal
displacement wavelength space. The data provide insight
into the application and development of fractional calcu-
lus based models and indicate their direct applicability to
biofilm impacted porous media transport.

In porous media such as Earth’s subsurface microbial
biofilms modify permeability and can serve to enhance
oil recovery or alter contaminant transport in bioreme-
diation. In medical applications microbial fouling of po-
rous and gel based biomedical devices, such as filtration
systems, is pertinent to infection and system function and
design. Pulsed gradient spin echo (PGSE) magnetic reso-
nance (MR) methods have found significant application
in the study of transport in model and natural porous
media due to the ability to measure molecular dynamics
in opaque systems [10,11]. The characterization of porous
media structure by molecular diffusion [5] and bulk flow
[12,13] is well established as is the ability to study dis-
placement time and wavelength dependence of hydrody-
namic dispersion [4,12,14]. The study of biofilm impact
on three-dimensional porous media transport dynamics
has been limited to bulk measurements of pressure drop
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correlated to permeability [15]. MR methods have been
applied to study the spatial distribution of biofilms in
porous media by diffusion [16] and magnetic relaxation
time weighting [17] methods; however, to our knowledge,
no detailed study of the impact on scale dependent dis-
persion dynamics has been undertaken.

Anomalous transport processes, those in which the
mean squared displacement varies nonlinearly in time
and which do not obey Gaussian statistics, are found in
many physical, chemical, and biological systems due to
the presence of correlated dynamics [7,8,18]. CTRW the-
ory provides a basis for modeling anomalous transport
[7,8,18] and is equivalent to a mass or probability conser-
vation approach based on generalized master equations
[19] from which fractional ADE’s can be derived [20].
The fractional ADE is consistent with nonlocal contin-
uum mechanics [21] and nonequilibrium statistical me-
chanics [22] models for transport in heterogeneous
porous media, i.e., those with property variations over a
hierarchy of scales. Fractional dynamics based on
CTRW’s represents a powerful extension of macroscale
transport [23] modeling in complex systems [6], by in-
clusion of memory effects [24]. CTRW’s characterize
transport in terms of a jump probability distribution
Y(Z, 1) for a tracer particle to undergo a jump Z after
waiting time ¢. Transport equations which are fractional
in either space or time are derived by assuming indepen-
dence of the jump length, A(Z), and waiting time, w(z),
distributions so that ¥(Z, r) = A(Z)w(t). Normal diffu-
sion, or Brownian motion, is recovered for finite mean
waiting times and jump length variances. Anomalous
diffusion is obtained in the form of a time fractional
ADE for divergent mean waiting time and a space frac-
tional ADE for divergent jump length variances, corre-
sponding to power law wait time and jump length
distributions [8,20].

MRM images of the impact of biofilm growth on the
pore scale velocity and magnetic relaxation time in a
model porous media constructed of 241 um monodis-
perse (Duke Scientific 4324 A) beads for fixed volumetric
flow rate are shown in Fig. 1. The pore scale velocity
images indicate greater spatial variability of the velocity
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FIG. 1 (color). MRM maps of velocity (top row) and T,
magnetic relaxation (bottom row) as a function of biofilm
growth time (left to right). Day 1 shows the clean porous media
composed of 241 um diameter monodisperse polystyrene
beads packed in a 5 mm i.d. cylinder. Spatial resolution is
54.7 um/pixel (128 X 128 pixels) in plane, so the data reflect
pore scale spatial distributions of velocity over a 1000 um slice
and biomass over a 200 wm slice. The biomass is just discern-
ible by day 2 in the 7, map, while the velocity distribution
shows a flow composed of regions of no flow and high velocity.
By day 4 biomass is clearly evident in the 7, map and the
velocity distribution shows more regions of no flow and even
higher velocities.

due to biofilm growth 2 and 4 d after inoculation with
Pseudomonas aeruginosa (FRDI1 containing the plasmid
pABI). Increased regions of no flow due to biomass
blocked pores generate high velocity in unclogged pores
to conserve mass for the fixed flow rate. The transverse
magnetic relaxation time images indicate the spatial dis-
tribution of the biomass growth by measuring enhanced
relaxation due to the restricted motion of water molecules
within the biomass [17]. On day 2 the impact on pore scale
velocity is more significant than on the magnetic relaxa-
tion, demonstrating the sensitivity of transport processes
to small amounts of biofilm growth.

To quantify the impact of the biofilm growth, PGSE
MR is used to measure the propagator, or conditional
probability, P,(z|z/,t) of a displacement from z to z/
over time ¢. In PGSE MR a pair of pulsed magnetic field
gradients is applied so as to encode in the phase of the
magnetization the location of all MR active spins at an
initial time and then unwind that phase at a set time A
later, generating phase shifts dependent on molecular
dynamics over time A [2,5]. The measured echo signal
E(g, A) is the Fourier inversion of the propagator aver-
aged over the initial spin density p(z),

B 8) = [[ p@P.cl2, ) explizmg(c ~ oldzas
= fP(Z, A)exp(i2mqgZ)dZ, (1)
where ¢ = (27) " 'ygé is the Fourier reciprocal wave-

length to displacement Z = 7' — z and P(Z, A) the aver-
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aged propagator [2]. Figure 2(a) shows the measured
propagator transition for flow at 1.67 ml/min, Peclet
number of 270, through the clean porous media from
preasymptotic at A =20 ms to Gaussian dynamics at
A =300 ms. Figure 2(b) displays the measured propaga-
tors for an observation time A = 300 ms as a function of
biofilm growth for the same fixed volumetric flow rate.
The day 1 clean porous media propagator is Gaussian,
indicating normal transport. The growth of the biofilm,
day 3 and day 7, alters the dynamics with increased
probability of small displacements due to fluid which is
entrained in the biomass and trapped in clogged dead-end
pores and persistent tails in the distribution due to higher
probability of large displacements in high permeability
unclogged channels. The data visualize an increase in the
complexity of the porous media due to bioactivity in the
sense defined by Goldenfeld and Kadanoff [6], a diver-
gence from normal transport statistics. The homogeneous
clean porous media have uniform pore size and perme-
ability which generate normal Gaussian dynamics. The
biofilm growth induces a heterogeneous structural tran-
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FIG. 2 (color). Measured propagators for (a) the transition
from preasymptotic to asymptotic Gaussian dynamics in the
clean bead pack as a function of observation time A and (b) the
transition from Gaussian to anomalous dynamics induced by
biofilm growth for an observation time A = 300 ms. The
vertical dashed lines are the bead diameter.
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sition with variable pore sizes and permeability varia-
tions over a range of length scales that generate a non-
Gaussian displacement distribution.

The CTRW formalism provides a model for the tran-
sition shown in Fig. 2(b) based on the strongly varying
spatial distribution of velocity shown in Fig. 1. Molecules
trapped in the biomass or fluid in blocked and partially
blocked pores must diffuse or slowly flow out to join the
faster moving fluid and have long wait times, while
molecules in minimally blocked or clean pores have
shorter or nonexistent wait times. The conceptual model
is that a molecular jump is independent of the preceding
wait time but depends on the velocity at the starting point
[20,24], in our case the position at the time of the first
gradient pulse of the PGSE pair.

A power law Lévy stable wait time distribution, w(z) ~
t717¢ for 0 < a < 1leading to divergent mean wait time
and a Gaussian jump length distribution with finite vari-
ance and starting velocity dependent shift are applied
[8,20,24]. The result is the time fractional ADE, or frac-
tional Fokker-Planck equation,

OP(Z, ) _ o1 o
92 1) — pi-a| -A z
6t* o+t |: aaZ*U( )
(:)2
+ D, —5 |P(Z", 1), 2
P @

where A, is a derivation derived advection parameter and
D, is the effective diffusion, or dispersion coefficient
[8,20,24]. The fractional Riemann-Liouville operator is
defined as

1 J
DI P(Z' 1) = ——— |
0™t ( I'a) of* ﬁ (t — )«

r P(Z*% 1) dr 3)

Note that for &« = 1 the Riemann-Liouville operator is
unity and Eq. (2) becomes the normal ADE and Gaussian
statistics are obtained. Plots of P(Z* r* = 3) for a con-
stant velocity, generated using the scaling relation be-
tween the fractional and Brownian solutions [8,24], are
shown in Fig. 3. Note the transition from the Galilei
invariant Gaussian for @ = 1 to the Galilei variant forms
for decreasing « and the increase in the long displacement
tail in qualitative agreement with the biofilm induced
transition. The biofilm growth induces a transition to
fractional dynamics.

The measurement of anomalous transport by PGSE
MR methods [25] has been limited primarily to the frac-
tional time dependence of the variance, (Z(¢)?) ~ D,
using the well known scaling [26] E(g, A)~
exp(—4m2¢>D,A¥). Recent theoretical predictions indi-
cate diffusion in fractal dimension, d, systems should
generate a power law scaling, E(g, A) ~ ¢*>~% in the long
wavelength limit [27]. Stretched exponential wavelength
scaling, E(g, A) ~ exp(—cgP?), has been applied in a phe-
nomenological fashion to PGSE MR data for biological
tissues [28] and corresponds to a space fractional model
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FIG. 3 (color). Theoretical propagators generated for solution
of Eq. (3), the time fractional ADE. The normal ADE is re-
covered for @« = 1 and transitions to stronger subdiffusive be-
havior for decreasing a, with the peak increasing around Z* =
0. Note the Galilei invariance of the normal ADE; i.e., distribu-
tion is translated by the mean velocity. In contrast, the frac-
tional model is Galilei variant and the distribution is skewed.
The graph is generated numerically using the scaling relation-
ship between the fractional and Brownian solutions [8,24].

[8]. Analysis of the data in ¢ space [5], Fig. 4(a), provides
additional interpretive detail of the biofilm impact on the
hydrodynamic dispersion dynamics [12]. The day 1 data
for the clean bead pack show rapid Gaussian decay fol-
lowed by a flow induced diffractionlike effect demon-
strating the regular pore size [3,12,13]. In contrast, the
biofilm data, days 2, 3, 5, and 7, no longer exhibit the
rapid Gaussian decay and show the transition from a
structurally ordered homogeneous porous media which
induce a diffractionlike signal modulation to a more
complex [6] heterogeneous structure.

The power law nature of the tails of the propagators in
Fig. 2 is quantified by the parameter B in stretched
exponential, E(g, A) ~ exp(—cgq?), fits of the low-¢ data
[7], ¢ < (dypeaa)”', as a function of observation time,
Fig. 4(b). This corresponds to a fractional ADE model
with a Poisson wait time distribution and a Lévy distri-
bution for the jump length [8]. The preasymptotic tran-
sition in Fig. 2(a) from a Cauchy-like to a Gaussian
distribution for the clean porous media involves a tran-
sition in g-space scaling, Fig. 4(b), from exponential at
short times, 8 ~ 1, to Gaussian, 8 ~ 2, in the asymptotic
limit. Note the difference in the asymptotic 8 for the two
runs due to packing differences. The biofilm impacted
dispersion data have decreasing 8 with increasing obser-
vation time. The stretched exponential in low ¢ space
corresponds to the power law behavior of the propagator
tails since the Fourier relationship provides the scaling
P(Z, A) ~ Z*P) and the transition in 8 at A = 300 ms
from ~2 to ~0.4 due to biofilm growth quantifies the
transition to a scale invariant distribution [7].

We find that biofilm growth in porous media generates a
transition in the hydrodynamic dispersion dynamics
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FIG. 4 (color). Biofilm induced transition of porous media
dynamics analyzed in the Fourier reciprocal g space [5].
(a) The echo signal shows the transition due to biofilm growth
from day 1 clean porous media, a rapid Gaussian decay with
diffractionlike coherence feature minima at the reciprocal bead
diameter, to a stretched exponential behavior at later days.
Days 1, 3, and 7 data correspond to Fig. 2(b). Note day 5 has
the most biomass present and a sloughing event occurred
between day 5 and day 7. (b) Stretched exponential, E(g, A) ~
exp(—cq®), q scaling parameter 8 as a function of displace-
ment time A in the clean and biofilm impacted porous media.
Scaling in the clean bead pack increases toward a Gaussian,
B ~ 2, with increasing time, while the biofilm generates dy-
namics with decreasing 3. Values of B at each A are averages of
multiple PGSE NMR experiments over 7 d for two separate
biofilm runs and the error bars are standard deviation.

which can be modeled as a transition from normal to
anomalous transport using a fractional ADE. The strong
impact of the biofilm on flow dynamics coupled with
recent innovations in MR technology for inexpensive
low magnetic field applications provides for the concept
of online biofilm assays [16] for bioreactor and filtration
technology. The data analysis shows strong coupling be-
tween the bioactivity induced evolution of the propagator
and stretched exponential scaling in g space providing a
basis for further exploration of the coupling of space and
time [19] in CTRW based fractional models. Fractional
ADE models represent a powerful new tool for predictive
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modeling of complex biophysical systems and continued
theoretical development, and comparison to measure-
ments will provide the refinement necessary for broad
application.
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