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Clustered Bottlenecks in mRNA Translation and Protein Synthesis
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Using a model based on the totally asymmetric exclusion process, we investigate the effects of slow
codons along messenger RNA. Ribosome density profiles near neighboring clusters of slow codons
interact, enhancing suppression of ribosome throughput when such bottlenecks are closely spaced.
Increasing the slow codon cluster size beyond �3–4 codons does not significantly reduce the ribosome
current. Our results are verified by both extensive Monte Carlo simulations and numerical calculation,
and provide a biologically motivated explanation for the experimentally observed clustering of low-
usage codons.
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FIG. 1 (color). (a) The mRNA translation/protein synthesis
process. Ribosomes move unidirectionally along mRNA as
tRNA (not shown) deliver the appropriate amino acid to the
growing chain. Codons with low concentrations of correspond-
ing tRNA result in bottlenecks that locally suppress ribosome
motion across it. (b) A simple totally asymmetric exclusion
process on N lattice sites used to model mRNA translation in
the presence of slow codons bottlenecks or defects.
During protein synthesis, ribosome molecules initiate
at the 50 end of messenger RNA (mRNA), scan (‘‘elon-
gate’’) along the mRNA sequence, and terminate with the
completed protein product at the 30 termination end
[Fig. 1(a)]. Each elongation step requires reading (trans-
lating) a nucleotide triplet (codon) and the binding of a
freely diffusing transfer RNA (tRNA) molecule carrying
the amino acid specific to that codon [1]. Besides being a
critical final stage of gene expression in vivo, control of
protein synthesis is vital for protein adaptation and evo-
lution [2–4], for the control of viral parasitism [5], and
for high yield, cell-free, synthetic in vitro protein produc-
tion [6].

Protein expression can be regulated by exploiting rela-
tive concentrations of tRNA in cytoplasm that determine
local ribosome translation rates. For example, viruses
have no transcriptional machinery and can only regulate
protein production by utilizing existing host tRNA abun-
dances [7] or by insertion or deletion of specific codons.
Technologically, tRNA abundances have also been ex-
ploited by modifying mRNA codons to those preferred
in mammalian systems, thereby optimizing expression
levels of green fluorescent protein [8].

‘‘Slow’’ codons (those with rare corresponding tRNA
and/or amino acids) along mRNA are known to inhibit
protein production [9,10]. Such ‘‘bottleneck’’ or ‘‘defect’’
codons typically include CTA (Leu), ATA (Ile), ACA
(Thr), CCT and CCC (Pro), CGG, AGA, and AGG
(Arg), but arise infrequently (about 4% in E. coli)
[11,12]. Slow codons can appear throughout the mRNA,
at or near the initiation site, termination site, and/or in
the interior ‘‘elongation’’ region [13]. Statistics indicate a
higher occurrence of rare codons near the 50 initiation
site of E. coli genes [14]. Even more striking is the pro-
clivity for rare codons to cluster [11]. Rare codon clusters
(�2–5) occur frequently in E. coli, Drosophilia, yeast,
and primates [11].

Although the strength, number, and positioning of
bottlenecks can affect local ribosome densities and over-
all translation rates, there has been no quantitative model
0031-9007=04=93(19)=198101(4)$22.50 
describing how various bottleneck motifs control ribo-
some throughput and protein synthesis. In this Letter, we
consider a simple physical model of how specific codon
usages that give rise to local delays in elongation can be
used to suppress protein synthesis. We develop a new
algorithm that allows accurate and fast numerical calcu-
lation of the steady-state ribosome throughput. Within a
nonequilibrium stochastic model, our results quantify the
biological effects of slow codon clustering.

We model mRNA translation by ribosome particles
using a nonequilibrium totally asymmetric exclusion pro-
cess (TASEP) [15,16] with a few carefully distributed
slow sites [cf. Fig. 1(b)]. In the TASEP, ribosome particles
attach (initiate) at the first lattice site with rate �, only if
the first site is empty. Interior ribosome particles can
move forward with rate pi from site i to site i� 1 only
if site i� 1 is empty. For each step a ribosome moves
forward, a codon is read, and an amino-acid–carrying
2004 The American Physical Society 198101-1
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FIG. 3 (color). Matrix-generating algorithm for a three site
model. Each possible occupancy of the lattice is associated with
a bit pattern, and the state is enumerated with the correspond-
ing decimal value; i.e., since 011 is the binary representation of
3, we label this state 3. Next, divide the states into groups where
the first lattice site is occupied (1-states), and where the first
lattice site is empty (0-states). Regardless of the number of
lattice sites in the TASEP, the transitions between the two
classes of states always occur between the first half of the
1-states and the second half of the 0-states (dashed red arrows).
To determine the remaining transitions we call the algorithm
recursively on both the 1-states and the 0-states, making sure to
ignore the highest order bit (i.e., the leftmost lattice site).
Finally, we add the transitions between each 0-state and each
1-state resulting from injection at the left edge of the lattice
(blue arrows). With the connectivity of the states fully enum-
erated, one readily assigns the appropriate rate pi to each of the
transitions.
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tRNA delivers its amino acid to the growing polypeptide
chain. No motion is allowed if the site in front of a
particular ribosome is occupied. Each ribosome that
reaches the last site i � N (the 30 termination site) has
polymerized a complete protein and detaches with rate �.

In the case of uniform pi � 1, the protein production
rate (e.g., the steady-state ribosome current) and ribosome
density along the mRNA are known exactly in terms of �
and � [15,16]. In the long chain (N ! 1) limit, the
steady-state results reduce to simple forms illustrating
the fundamental physical regimes. The current may be
entry-rate limited (�< 1=2, �< �), where the ribosome
density is low and the steady-state current J��� � ��1	
�� depends only on �. If � is sufficiently small (�< 1=2,
�< �), the density is high and the current J��� � ��1	
�� is a function of only the rate-limiting exit step. When
both �;� > 1=2, the rate-limiting processes are the uni-
form internal hopping rates, and J � 1=4. For typical
mRNA (N � 100–1000 codons), these simple analytic
forms for J are extremely accurate. We shall restrict our
subsequent analyses to the N ! 1 limit.

There is no general theory for computing steady-state
particle (ribosome) currents when the internal hopping
rates pi vary with lattice position i. Generally, one solves
2N system of equations for all the configurational proba-
bilities. However, determining the sparse 2N 
 2N tran-
sition matrix is time-consuming as it requires testing all
configurations for connectivity. However, specific motifs
fpig (such as isolated defects [17] and periodic variations)
can be treated with approximations and simulation. Since
slow codons are also rare, with typical probabilities of
0.03, we will consider simple configurations of a few,
identical bottlenecks (with hopping rate q < 1) distrib-
uted within an otherwise uniform (with rate 1) lattice.
Finite numbers of ‘‘fast’’ defects (q > 1) do not affect
steady-state currents since the rate-limiting hops pi � 1
dominate the lattice. Figures 2(a)–2(c) show hypothetical
placements of defects near the 50 initiation end, the
mRNA interior, and the 30 termination end. Within a
finite-segment (of length n � 5; 6; 4 sites in Fig. 2, re-
spectively) straddling the bottlenecks, we explicitly enu-
merate all 2n distinct states according to the algorithm
indicated in Fig. 3. This generates a banded (of width
2n	1) 2n 
 2n matrix coupling the probabilities Pj�1 


j 
 2n� that the segment is in state j.
(b)(a)
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FIG. 2 (color). Placements of slow defects, or rare-usage
codons (thick red segments). (a) Two defects near the initiation
site straddled by an n � 5 lattice segment. (b) Two defects in
the chain interior, away from the boundaries, n � 6. (c) A
single slow defect near the termination end of the chain, n � 4.
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Now consider an interior segment [Fig. 2(b)]. The mean
density in the site immediately to the left (right) of the
segment is denoted �	 (��). The transition matrix con-
tains the parameters �� since entry and exit into the enu-
merated segment is proportional to �	 and 1	 ��, re-
spectively. The steady-state current can be calculated
from the particle flux out of the rightmost site of the seg-
ment: J��	;��;fpig���1	���

P
j�oddPj��	;��;fpig�,

since the odd states correspond to those with a particle
at the last site in the segment. The singular eigenvector of
the 2n 
 2n, sparse, banded transition matrix was com-
puted (up to n � 18) using an implicit restarted Arnoldi
iteration method [18] via MATLAB. The effects of particle
correlations surrounding a bottleneck are accounted for
provided n is larger than the density boundary layer
thickness. Since the densities are uniform far from the
defects, we assume that they are also �	 (��) far to the
left (right) of the segment. Thus, the mean-field currents
well to the left and right of the segment are J	��	�1	
�	��J�����1	���. Since the only physical solution
is �	�1	��, we equate J��	�1	��;��;fpig��
���1	��� and solve for �� numerically, determining
J. For �< 1=2 and defects near the initiation end, we
simply equate J��;��; fpig� � ���1	 ��� and solve for
��. For �< 1=2 and defects near the termination end,
�	 is determined from �	�1	 �	� � J��	; �; fpig�. We
used this improved, systematic finite-segment mean-field
theory (FSMFT) to compute currents of TASEPs with
various placements of internal defects. In practice, seg-
ment lengths that include only 2 to 3 sites on each side of a
defect were sufficient for obtaining extremely accurate
198101-2
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results. Efficient continuous-time Monte Carlo (MC)
simulations using the Bortz-Kalos-Lebowitz algorithm
[19,20] were performed on lattices of size N � 1000 to
verify all numerical results.

MC simulations show that for �;� > 1=2, the currents
J are insensitive to the position of defects. The behavior
for �;� < 1=2 resembles an interior defect near the
initiation or the termination end. Slow initiation and/or
termination rates can be effectively described by defects
(q < 1) near the ends of the lattice. Therefore, we restrict
our analysis to large �;� � 1=2. Hopping across a single
interior defect (with rate q < 1) is the overall rate-
limiting step. The single-defect-reduced steady-state cur-
rent J1�q� found from both FSMFT and MC simulations
are shown in Fig. 4(a). The n � 4 FSMFT yields currents
within 2% of those computed from MC simulations. The
least-accurate n � 0 FSMFT gives J � q=�q� 1�2 and is
equivalent to previous treatments of a single defect [17].
Larger segments n yield increasingly unwieldy algebraic
expression for J1�q�. The FSMFT (which is exact as if
n � N) is asymptotically correct for q ! �0; 1� and is a
systematic expansion in J �

P
1
i�1 aiq

i about q � 0.
Coefficients up to an�1 can be shown to be given correctly
by a 2n-segment MFT; i.e., for n � 1, J� q	 3q2=2�
O�q3� rather than the J� q	 2q2 �O�q3� predicted by
the 0-segment MFT [17].

The current J will diminish upon addition of succes-
sive, contiguous defects. The steady-state current across
m equivalent, contiguous interior bottlenecks can be ex-
pressed as the power series Jm�q ! 0� � � m�1

4m	2�q�

O�q2�. As m increases, the current is determined by the
rate-limiting m segment which resembles a uniform chain
of hopping rates q with relatively fast injection from, and
extraction into, the remainder of the uniform lattice. The
current approaches J � q=4, that of a long, uniform chain
with hopping rates q in the maximal current regime.
Figure 4(b) plots Jm�q�=q for various q as a function of
m defects using a highly accurate 14-segment MFT. For
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FIG. 4. (a) Comparison of steady-state currents J1�q� for a
single defect derived from MC simulations with those obtained
from n-segment MFT. For n � 4, the FSMFT results are within
2% of those from MC simulations. The boundary injection or
extraction rates were not rate limiting �� � � � 10�.
(b) Further reduction of steady-state current as successive,
identical defects is added. The first few defects cause most of
the reduction in current.
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all q < 1, Jm�q�=q approaches 1=4 as m ! N. For strong
bottlenecks (q & 0:3), the largest decrement in Jm�q�
occurs as m � 1 ! 2. Therefore, one may consider the
effects of placing only two bottlenecks in the mRNA
interior. Figure 5(a) shows the expected currents J2�q; k�
across a chain containing two defects spaced k sites apart.
Results for k 
 10 were computed using an n � 14
FSMFT, while those for k > 10 were obtained from MC
simulations. The largest reduction in the current occurs
when two defects are spaced as closely as possible. The
current J2�q; k ! 1� ! J1�q� eventually approaches that
for a single defect. A finite number of multiple defects, if
spaced far apart, will not significantly decrease J relative
to the case of a single defect. As k increases, the density
downstream of the first defect recovers to the bulk value
�	 before encountering the second defect. This behavior
is clearly shown (using both FSMFTand MC simulations)
in Fig. 5(b) for a pair of defects (q � 0:15). For two
identical defects with small q, we find J2�q; k� � kq=�k�
1� �O�q2�. Therefore, the current for two identical bot-
tlenecks is at most a factor of 2 smaller than that for a
single defect. This maximal contrast occurs when q ! 0
and when the two bottlenecks are adjacent to each other.
Figure 5(c) plots the variation in J2�q; k�=J1�q� as a
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FIG. 5. (a) Steady-state currents across a chain with two
identical interior defects spaced k sites apart. The current is
suppressed most when the defects are closely spaced. (b) The
density profiles near a pair of defects (q � 0:15) of various
spacings k. The thick vertical bars denote the defect positions
for k � 6. For larger k, density boundary layers heal, allowing
particle buildup behind the second barrier, enhancing the
current. (c) The dependence of the normalized steady-state
current J2�q; k�=J1�q� as a function of the defect separation.
(d) The upper bound for the mean current of a lattice with m
defects randomly distributed within the central N � 300 sites.
A lower bound as m ! N 	 1 is hJ�m ! N 	 1�iran ! q=4.
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function of k for various q. Note that the defect spacing
dependence of J is a consequence of the nonlinear exclu-
sion dynamics. If the lattice particles were independent
(no exclusion), their complete traversal time is simply the
sum of the individual waiting times and would not de-
pend on the defect arrangement.

Typically, a cell has a fixed number of rare codons with
which to regulate translation. From the two-defect cur-
rent J2, we estimate the expected current for m randomly
distributed bottlenecks. The total number of ways m
defects can be placed on N 	 1 interior sites, such that
the minimum pair spacing is � k is

Zk�m;N� �

�
N 	 1	 �m	 1��k	 1�

m

�
:

The probability that the minimum interdefect spacing
equals k is thus Qk�m;N� � Z	1

1 �Zk 	 Zk�1�. Since the
current produced by a defect configuration with a mini-
mum defect spacing k is 
J2�q; k�, we find the upper
bound:

hJiran 

Xintf�N	1�=�m	1�g

k�1

Qk�m;N�J2�q; k�: (1)

This upper bound will be very accurate if the defect
density is low enough that one can neglect the probability
that more than two defects each separated by k sites form
a single cluster, particularly for small k. Although the
most likely minimum defect spacing is k � 1, at low
defect densities, the total probability of closely spaced
defects remains small and the weight of Qk�m;N� at
larger k dominates the statistics of hJiran. The disorder-
averaged current hJ�m;N � 300�iran [normalized by
J1�q�] is shown in Fig. 5(d). For very small m, the current
is approximately that of a single defect. The current is
most sensitive to the number of random defects at m �
10, corresponding to m=N � 0:03, approximately the
fraction of slow codons observed in vivo. Nonetheless,
the observation of enhanced, nonrandom clustering sug-
gests that other biological regulation pathways exist
and would yield currents measurably below the upper
bound (1).

We have found that not only can a single defect directly
inhibit elongation across it, but also that a few bottle-
necks, properly distributed, can further slow protein pro-
duction by a factor of �2–4 [21]. Although maximal
current reduction is achieved by clustering defects as
tightly as possible, successive addition beyond a handful
of defects does little to reduce the current. Defects which
are all spaced more than a handful of sites apart will not
reduce the throughput more than a single defect. Our
mathematical results are qualitatively consistent with
the idea that a single, localized region provides the rate-
limiting step for translation. Since initiation, which re-
quires assembly of numerous ribosome parts, is typically
198101-4
rate limiting, the existence of slow codons near the start
codon [14] (forming the equivalent of two closely spaced
defects near the start) suggests that their role is to sup-
press protein synthesis. Conversely, a finite number of
well-separated defects at appropriate junctures provides
pause points for, say, local, successive protein folding
with minimal reduction in current.
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