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Recent fluorescence spectroscopy experiments on single wall carbon nanotubes reveal substantial
deviations of observed absorption and emission energies from predictions of noninteracting models of
the electronic structure. Nonetheless, the data for nearly armchair nanotubes obey a nonlinear scaling
relation as a function of the tube radius R. We show that these effects can be understood in a theory of
large radius tubes, derived from the theory of two dimensional graphene where the Coulomb interaction
leads to a logarithmic correction to the electronic self-energy and marginal Fermi liquid behavior.
Interactions on length scales larger than the tube circumference lead to strong self-energy and excitonic
effects that compete and nearly cancel so that the observed optical transitions are dominated by the
graphene self-energy effects.
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The optical transition energies of semiconducting
nanotubes, along with their dependence on the nanotube
diameter and chiral angle, have been studied in a recent
series of fluorescence spectroscopy experiments [1–3].
Though the experiments were originally interpreted in
the context of a simple noninteracting electron model, it
has become increasingly clear that electron interactions
play an important role in determining the optical tran-
sition energies [4–7]. As pointed out in early work by
Ando [4], interactions lead to (i) an increase in the single
particle energy gap and (ii) binding of electrons and holes
into excitons. More recently, Spataru et al. [6] have
reached a similar conclusion by computing the optical
spectra for selected small radius nanotubes. However, the
systematic dependence of the transition energies on nano-
tube radius has not been addressed.

In this Letter we examine the optical excitations of
carbon nanotubes in the limit of large radius, R, where
they inherit their electronic structure from that of an
ideal sheet of two dimensional (2D) graphene. This per-
mits a systematic study of the radius and subband depen-
dence of the excitations to leading order in 1=R and
establishes a global framework for understanding nano-
tube optical spectra. For large R the electron interactions
fall into two categories: (i) 1D interactions on scales
longer than the tube circumference and (ii) 2D interac-
tions on scales smaller than the tube circumference. We
find that the 1D long range interaction (i) leads to both a
substantial enhancement of the energy gap and a large
exciton binding energy which both scale as 1=R.
Although both effects are large they have opposite signs
and ultimately lead to a moderate enhancement of the
predicted optical transition energy. By contrast, we find
the 2D interactions (ii) lead to a logR=R correction to the
band gap renormalization. This singular behavior can be
traced to the effect of the Coulomb interaction on the
dispersion of 2D graphene, which leads to marginal
Fermi liquid behavior [8]. This logarithmic correction
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is not canceled by the exciton binding energy and leads
to a nonlinear scaling of the transition energies with R,
reflecting the finite size scaling of the 2D marginal Fermi
liquid. The presently available optical data indeed show
this nonlinear scaling behavior and agree favorably with
the predictions of the large radius theory even for tubes
with moderately small radii R� 0:5 nm.

Below we review the noninteracting electron predic-
tions for the energy gaps of semiconducting tubes and
show that they cannot explain the asymptotic nonlinear
scaling behavior present in the observed transition ener-
gies. We then present the theory for large radius tubes,
focusing first on the effect of the 2D interaction on scales
shorter than the circumference. We then incorporate the
longer range 1D interactions into the theory.

The simplest model of nanotube electronic structure,
based on noninteracting electrons in a linear graphene
spectrum, predicts that the energy gaps of semiconduct-
ing nanotubes are

E0
n�R� � 2n 
hvF=3R; (1)

where R is the nanotube radius, n � 1, 2, 4, 5 describes
the 1st, 2nd, 3rd, and 4th subbands, and vF is the graphene
Fermi velocity. For a tight binding model on a honeycomb
lattice with lattice constant a and a nearest neighbor
hopping amplitude �0, 
hvF �

���
3

p
�0a=2. The linearized

model (1) is exact in the limit of large radius and is the
first term in an expansion in powers of 1=R. Corrections
due to curvature [9] and trigonal warping [10] are pro-
portional to � sin3
=R2, where 
 is the chiral angle (
 �
0 denotes an armchair wrapping) and � � �1 is the
chiral index. A central prediction of the noninteracting
model is thus that for large R the band gaps scale linearly
with n=R—a fact that can be traced to the linear disper-
sion of graphene at low energies. The large R limit is most
accurate for nearly armchair nanotubes for which the
sin3
 corrections are smallest. For such tubes Eq. (1),
describes the tight binding energy gaps to better than
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1% for tubes with radii as small as 0.5 nm. The next term
in the expansion at O�1=R3� is negligible. Here we focus
exclusively on nearly armchair nanotubes, where large R
scaling can be meaningfully applied. sin3
 corrections,
when present in specific nanotubes, lead to deviations
from the scaling predictions [6,7,11].

The observed transition energies do not scale linearly.
For large R, E2�R�=E1�R� appears to saturate at 1.7 rather
than 2—a fact we have called the ‘‘ratio problem’’ [5]. In
addition, the observed En�R� are systematically larger
than the noninteracting prediction. A nearly armchair
nanotube with R � 0:5 nm has E1 � 0:98 eV.
Equation (1) then gives 
hvF � 7:35 eV �A, which is larger
than 5:3 eV �A found in graphite and 6:1 eV �A deduced
from resonance Raman data. The ‘‘blueshift’’ cannot be
represented by a simple scaling of En�R� since it is larger
for larger R and not linearly proportional to n=R.

In Fig. 1 we plot the transition energies reported in
Ref. [1] as a function of n=3R, where n is the subband
index, and R is the tube radius deduced in Ref. [1] by
exploiting the pattern of sin3
=R2 corrections. Different
symbols represent the data with � � �1. The separatrix
between the data for � � �1 locates the nearly armchair
tubes with 
� 0. At the separatrix the sin3
=R2 correc-
tions are absent, so the large R limit should be accurate to
order O�1=R3�. It is clear, however, that even at the
separatrix, the linear scaling in (1) is not satisfied.
Nonetheless, it is striking that the data near the separa-
trix for the two subbands lie approximately on the same
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FIG. 1. Optical transition energies in the first two subbands
for semiconducting nanotubes measured in Ref. [1] as a func-
tion of n=3R. The filled (open) symbols correspond to �p; q�
nanotubes with chiral index � � p
 qmod3 � 
1 ( 
 1). The
dashed line is prediction of the noninteracting theory. The solid
line is Eq. (4), which incorporates the effect of the 2D Coulomb
interaction.
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nonlinear curve. The simplest interpretation of this ap-
parent scaling behavior is that these energies probe the
dispersion of 2D graphene at a wave vector qn � n=3R.
This suggests that the ratio problem and the blueshift
problem have the same origin.

Gonzalez et al. [8] have shown that the Coulomb in-
teraction in 2D graphene leads to a singular correction to
the electron self-energy. In the effective mass model [12]
graphene is described by the Dirac Hamiltonian

H � 
hvF
Z
d2r y ~� �

~r
i
 


e2

2

Z
d2rd2r0

n�r�n�r0�
jr
 r0j

;

(2)

where  is a spinor with two copies for the K-K0 degen-
eracy, and n �  y . The Coulomb interaction is charac-
terized by a dimensionless parameter g � e2= 
hvF. To
leading order in g the electronic dispersion is calculated
by evaluating the exchange self-energy, leading to

E�q� � 
hvFq�1
 �g=4� log��=q��; (3)

where � is an ultraviolet cutoff of order the inverse lattice
constant. The nonlinear behavior as q! 0 is a conse-
quence of the long range singularity of the 2D Coulomb
interaction V�q� � 2�e2=q. It is thus important to ac-
count for screening. The semimetallic Dirac spectrum of
graphene leads to a static polarizability ��q� �
�1=4�q=vF. The linear dependence on q exactly cancels
the 1=q singularity of V�q�, leading to a multiplicative
renormalization of the interaction analogous to screening
in a 3D dielectric. The q! 0 logarithmic correction to
E�q� survives screening although its coefficient is renor-
malized. In a static screening approximation the renor-
malized interaction is gscr � g=�1
 g�=2�.

Though it is derived for small g, this result has deeper
implications, since it shows that the weak interaction
limit is perturbatively stable. Equation (3) is invariant
under the renormalization group (RG) transformation
� ! �e
‘, g! g�‘�, vF ! vF�‘� with

dg=d‘ � 
g2=4; dvF=d‘ � vFg=4: (4)

We may interpret (3) in terms of a scale dependent renor-
malization of vF and g. The interaction vertex e2 � 
hvFg
is not renormalized, so that the scaling is characterized
by a single parameter g. Equation (4) shows that g is
marginally irrelevant: at long wavelengths g becomes
smaller and perturbation theory becomes better. This
implies that even for strong interactions the system flows
to the perturbative limit at long wavelengths where (3)
and (4) are valid. Therefore, the dispersion for small q is
given exactly by (4) with renormalized parameters vF
and g, which depend on the cutoff scale �.We thus have a
situation similar to Fermi liquid theory, where low energy
quasiparticles behave like noninteracting particles, albeit
with renormalized parameters. Here, however, the mar-
ginal irrelevance of g leads to logarithmic corrections
which do not disappear at low energies. As emphasized by
197402-2
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FIG. 2. Single particle gaps (dashed lines) and particle-hole
gaps (solid lines) for the first four subbands of semiconducting
�p; p� nanotubes with phase shifted boundary conditions cal-
culated for 5< p< 25. The thick line is the prediction of the
2D theory Eq. (4).
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Gonzalez et al. [8], this singular behavior is a signature of
a marginal Fermi liquid.

Though (3) is exact for q! 0, it remains to determine
the values of the renormalized parameters vF and g when
the bare interactions are strong. Using the Fermi velocity
of bulk graphite (where 3D screening eliminates the
logarithmic singularity), 
hv0F � 5:3 eV �A we estimate a
bare interaction strength of g0 � e2= 
hv0F � 2:7 at a cut-
off scale �0 of order the inverse lattice constant. A crude
estimate of the renormalized parameters may then be
obtained by extrapolating (4) to strong coupling using
g � �g
1

0 
 �1=4� log�0=��
1. For �� 0:5 nm
1 this
gives g� 1:1 and 
hvF � 12:9 eV �A. A more accurate
theory requires knowledge of the form of the RG flow
equations (4) for strong coupling and requires an approxi-
mation. Gonzalez et al. [8] have developed aGW approxi-
mation, which incorporates a dynamically screened
Coulomb interaction. A simpler theory can be developed
within a statically screened approximation. We find that
the results agree within 5% with the dynamically
screened theory [13]. For static screening the renormal-
ized dispersion has the same form as (3) with g replaced
by gscr � g=�1
 g�=2�. The RG flow equations are simi-
larly modified with a factor of �1
 g�=2�
1 on the right-
hand side of (4). This leads to a refined estimate of the
parameters at �� 0:5 nm
1: g � 2:0; 
hvF � 7:2 eV �A.
The screened interaction is gscr � 0:48.

The nonlinear scaling form of the separatrix in Fig. 1 is
consistent with Eq. (3). Choosing the scale � �

0:5 nm
1, the data are well fit with the parameters vF �

7:8 eV �A and g � 0:74. These parameters are in accept-
able agreement with the statically screened theory de-
scribed above, given the theory’s simplicity. The 2D
interactions in graphene appear to explain the nonlinear
scaling of the data in Fig. 1 and thus resolve both the ratio
problem and the blueshift problem.

Nevertheless, the agreement between the data and the
interacting theory of 2D graphene is surprising because
the latter does not account for excitonic effects, which are
known to be large [4,6,7]. To describe excitons it is
essential to account for the 1D interactions on scales
larger than R. In addition to binding excitons, these
interactions enhance the single particle energy gap. To
address this issue we numerically calculated both the
single particle and particle-hole gaps. We find that the
two 1D interaction effects largely cancel, so that the R
dependence of the particle-hole gap is ultimately well
described by the 2D theory. We begin by discussing our
numerical calculation. We then show how these conclu-
sions can be understood within a simple 1D model.

We have computed the the single particle and particle-
hole energy gaps for nanotubes in a statically screened
Hartree-Fock approximation. Our calculation is similar
to that previously reported by Ando [4], though here we
focus on the R dependence of the energy gaps. We use a �
electron tight binding model, which includes all 1D sub-
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bands. To avoid the complications associated with the
� sin3
=R2 corrections we study semiconducting tubes
by calculating excitations of armchair tubes with an
energy gap imposed by an appropriately phase shifted
boundary condition. The single particle band gaps are
computed by evaluating the exchange self-energy using
a statically screened Coulomb interaction. The particle-
hole gap is determined by numerically diagonalizing the
Schrödinger equation for the particle and the hole in the
renormalized bands bound by the screened interaction.
This is equivalent to solving the Bethe-Salpeter equation
in the static screening approximation.

Figure 2 shows the single particle and particle-hole
gaps as a function of radius and subband index. To em-
phasize the corrections to linear scaling we provide a log-
linear plot of En�R�=E0

n�R� as a function of R=n, where E0
n

is given by (1) and is proportional to n=R. The prediction
based on the statically screened 2D theory of graphene
given in (4) is shown for comparison [14]. The single
particle gaps are strongly enhanced relative to their non-
interacting values, while the particle-hole gaps are only
moderately enhanced. Thus, most of the enhancement of
the single particle band gap is canceled by the electron
hole interaction that binds the exciton. Moreover, since the
slopes of all of the curves are the same in Fig. 2, both the
single particle and the particle-hole gaps exhibit the same
logarithmic increase with radius. The excitonic binding
energy, which is the difference between the two, does not
have the logarithmic increase, and scales inversely with
R. The particle-hole gaps for the different subbands lie
nearly on a single straight line, close to the prediction of
the 2D interacting theory. This is consistent with the
scaling behavior in the experimental data in Fig. 1. In
contrast, the single particle gaps are well above the pre-
dictions of the 2D theory and do not obey scaling with the
subband index.
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The essential features in Fig. 2 can be understood
within a simpler model for the 1D interactions on scales
larger than the tube radius. For example, consider a semi-
conducting nanotube with a bare energy gap 2� with an
infinite range interaction V�x� � V0. This is the constant
interaction model, familiar from the theory of the
Coulomb blockade. In this model the interaction energy
is V0N

2=2, where N is the total number of electrons. The
single particle energy gap is then simply 2�
 V0. The
particle-hole energy gap, which determines the energy of
optical transitions, is 2�. Since the exciton is electrically
neutral, its energy is unaffected by the infinite range
interaction. For this model the exciton binding energy
exactly cancels the enhancement of the single particle
gap.

Though the 1D Coulomb interaction V0�q� � 2e2 lnqR
is not truly an infinite range, the infinite range limit is an
appropriate starting point for describing 1D effects. In the
static screening approximation, Vscr�q� � V0�q�=�1

V0�q���q��. Since the 1D polarizability ��q� �
q2R2=vF for small q, the q! 0 part of the interaction
is unscreened. Screening suppresses only the shorter
wavelength components, leaving a screened interaction
which is more strongly peaked at low momenta qR� 1,
i.e., closer to the infinite range limit. Note that this is
consequence of the one dimensionality of the nanotube
and has no analog in a 3D semiconductor, where the long
range interaction is uniformly reduced by the dielectric
constant. These considerations help to explain the behav-
ior in Fig. 2. The net effect of the long range 1D inter-
actions on the excited states is relatively small in spite of
the fact that the renormalization of the single particle
energy gaps and the binding energy of the electron hole
pair are separately quite strong.

The scaling of the exciton binding energy EB with R
may also be considered in a simple 1D model. Begin with
the Hamiltonian (2) defined on a cylinder of radius R and
integrate out the high energy degrees of freedom down to
a cutoff scale �� 1=R. The renormalized Hamiltonian
then has the same form as (2) and depends only on three
parameters, e2, vF, and R. It follows that the eigenvalues
of H have the scaling form, �e2=R�f�g�, where g �
e2= 
hvF is the interaction at scale 1=R [15]. Since g is
scale dependent, the absence of the logarithmic correc-
tion of EB in Fig. 2 implies that the scaling function f is
independent of g. Perebeinos et al. [7] have found an
approximate scaling relation for the exciton binding en-
ergy for interactions screened by a dielectric constant 4<
#< 15. For nearly armchair tubes with effective mass
m� 1=�vFR� they find f�g� � g%
1=#%, with %� 1:4.
This describes the crossover between the Wannier limit
#� 1, where f�g� � g=#2 and a strong interaction limit
#� 1 where the dependence on g is weak.

Note that this scaling argument does not imply that the
the band gap renormalization and exciton binding scale
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like n=R. The apparent scaling behavior for the particle-
hole gaps in Fig. 2 is a consequence of the cancellation
between the long range 1D interaction effects. Because of
this near cancellation, the effects of the two dimensional
electronic interactions can be seen clearly in the experi-
mental data. It is interesting that over the range of ex-
perimentally measured tube radii the optical spectra
reflects the finite size scaling of the marginal Fermi
liquid state of 2D graphene.

We also note that the large single particle gaps shown
in Fig. 2 are likely to be important for many nanotube-
derived devices but have yet to be measured directly in
experiments done to date. They are accessible in principle
by measuring the activation energy for transport in a
semiconducting tube or by measuring the threshold for
photoconductivity following optical excitation into the
lowest subbands. Interpretation of the gaps measured in
scanning tunneling spectroscopy is complicated by
screening effects from the substrate and makes it difficult
to extract the single particle gap of individual tubes.
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