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Magnetization plateaus, visible as anomalies in magnetic susceptibility at low temperatures, are one
of the hallmarks of frustrated magnetism. We show how an extremely robust half-magnetization plateau
can arise from coupling between spin and lattice degrees of freedom in a pyrochlore antiferromagnet
and develop a detailed symmetry of analysis of the simplest possible scenario for such a plateau state.
The application of this theory to the spinel oxides CdCr2O4 and HgCr2O4, where a robust half-
magnetization plateau has been observed, is discussed.
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FIG. 1 (color online). A section of the pyrochlore lattice,
showing its two-sublattice tetrahedral structure. At zero mag-
netization, tetragonal lattice distortion favors the spin con-
figurations of the type shown in (a), while at half magnetiza-
tion trigonal lattice distortion favors the configuration (b). AF
bonds are marked with solid black lines and FM bonds with
dashed lines.
Spinels, with chemical formula AB2O4, are ubiquitous
among magnetic oxides. Notable examples of such mate-
rials include Fe3O4, a system exhibiting frustrated charge
order and ferrimagnetism [1], the d-electron heavy fer-
mion compound LiV2O4 [2], and the frustrated S � 3=2
antiferromagnet ZnCr2O4 [3]. In all of these compounds,
the B-site ion is magnetic, and much of the beautiful
strangeness seen in the behavior of these compounds
can be traced back to the fact that the B-site ions form
an acutely frustrated pyrochlore lattice, built entirely of
corner-sharing tetrahedra (Fig. 1).

The geometric frustration of the pyrochlore lattice is so
great that both the classical (S � 1) and quantum (S �
1=2) antiferromagnetic (AF) Heisenberg models are be-
lieved to remain magnetically disordered down to T � 0
[4,5]. In real spinel oxides, however, the ground state
degeneracy associated with the frustrated lattice geome-
try is usually lifted by a distortion of the lattice. ZnCr2O4,
for example, undergoes a transition from a paramagnet
with cubic symmetry to a Néel ordered phase with te-
tragonal symmetry at T � 12 K.

Another, more progressive, means of reducing the
ground state degeneracy of a frustrated AF is to apply a
magnetic field. Fields h greatly in excess of the exchange
coupling J between spins will remove magnetic frustra-
tion altogether and cause the system to become ferromag-
netic. At intermediate fields h� J, frustrated AF’s
frequently undergo a succession of phase transitions,
with associated anomalies in their magnetic susceptibil-
ity. Where one particular state remains stable for a finite
range of fields, a plateau is seen in the magnetization
curve M�h�. Magnetization plateaus have been predicted
to occur in both triangular lattice and kagome AF’s [6–9].
In pure spin models, such plateaus occur as an ‘‘order
from disorder effect’’ where quantum or thermal fluctua-
tions select one of many possible classical ground states
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[10]. For this reason they are usually very fragile, and
relatively difficult to observe in experiment.

In this Letter we consider the interplay between mag-
netic field, spin, and lattice degrees of freedom in a
Heisenberg antiferromagnet on the pyrochlore lattice.
Our main result is that the coupling of applied magnetic
field to lattice distortion provides an extremely efficient
mechanism for stabilizing a robust half-magnetization
plateau, with exactly three up spins and one down spin
in each tetrahedral subunit of the lattice. In principle,
many such states may arise; we develop a detailed sym-
metry analysis of the simplest case, in which all of the
tetrahedra which go to make up the lattice distort in the
same manner.

Our analysis is of direct relevance to spinel oxides such
as ZnCr2O4, where the A-site ion is nonmagnetic, and the
octahedrally coordinated B-site ion has an exactly half-
filled t2g shell of d electrons, giving rise to a spin S � 3=2
moment. Indeed, just such a plateau has been observed in
2004 The American Physical Society 197203-1
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FIG. 2 (color online). Phase diagram as a function of mag-
netic field h and dimensionless coupling constant b. Solid lines
denote first and dashed lines, second order transitions. Spin
configurations and irrep of the order parameter in each phase is
also shown.
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recent high field magnetization measurements on the
closely related Cr spinels CdCr2O4 and HgCr2O4 [11].

We take as a starting point the Hamiltonian

H �
X
hi;ji

�
J�1� �1�i;j�SiSj 	

K
2
�2
i;j

�
� h

X
i

Si; (1)

where the summation hi; ji runs over the nearest neighbor
bonds of a pyrochlore lattice and �i;j is the change in
distance between neighboring spins Si and Sj, relative to
the equilibrium lattice constant. We assume the existence
of a linear regime in which exchange interactions and
elastic energies depend only on the distance between
lattice sites. It is convenient to introduce a single dimen-
sionless parameter b � J�2=K to measure the strength of
the spin-lattice coupling. As written, the antiferromag-
netic exchange interaction J, elastic constant K, and a
spin-lattice coupling � are all taken to be positive.

The pyrochlore is a bipartite network of corner-sharing
tetrahedra. This means that, if we neglect coupling to the
lattice, we can write the energy per spin as

H � 4J
X
tetr

�
M�

h
8J

�
2
�

h2

16J
	 const; (2)

where the sum runs over all the tetrahedra and M �
�S1 	 S2 	 S3 	 S4�=4 is the magnetization per site.
Clearly, the energy can be minimized by ensuring M �
h=8 in each tetrahedron. However this local constraint
does not select any one ground state, but rather a vast
manifold of states. If we consider classical spins, one
angular variable remains undetermined per tetrahedron,
and the magnetization is linear in h right up the satura-
tion field of h � 8J.

Coupling to the lattice provides a very efficient mecha-
nism for lifting this degeneracy. Since bond energies vary
linearly with �i;j, while elastic energies increase as �2

i;j, at
any given value of magnetic field the system can always
gain energy by ordering the spins and distorting the
lattice. In this sense the Hamiltonian (1) can be thought
of as a three dimensional generalization of the spin-
Peierls problem. The system gains the most energy from
distorting bonds for which SiSj takes on its extremal
values. For this reason, coupling to the lattice tends to
favor collinear spin configurations and, for quantum
spins, bond singlets (see, e.g., [12]). Our goal is to under-
stand which states emerge from this competition between
applied field and frustrated AF interactions and for what
range of fields they are stable.

For the sake of simplicity, and in the spirit of earlier
work [13,14], we shall restrict our analysis to uniform
spin and lattice order with crystal momentum q � 0. It is
instructive to further simplify the problem by treating the
spins as classical vectors, in which case we can safely
neglect all states which are odd under the inversion IT
which exchanges the two tetrahedron sublattices. Both of
these approximations can be relaxed at will.
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Under these assumptions, the system must have four
sublattice order, and we can find the ground state of Eq. (1)
by a straightforward minimization of energy with respect
to bond length. This is equivalent to solving a Heisenberg
model with biquadratic-bilinear terms[15]:

H �
X
hi;ji

J
SiSj � b�SiSj�
2� � h

X
i

Si: (3)

Our results are summarized in the phase diagram Fig. 2,
with the corresponding magnetization curves shown in
Fig. 3. For small h, the lattice has overall tetragonal
symmetry, with tetrahedra distorted so as to have two
long ferromagnetic (FM) and four short canted AF
bonds. This is broadly compatible with the experimentally
observed ground state of ZnCr2O4 [3]. In this regime the
magnetization of the system remains linear but with
reduced slope M � h=
8J�1	 2b��.

For h � 3J and b * 0:05 the system makes a first order
transition into state with exactly three up and one down
spins per tetrahedron, i.e., M 
 S=2, regardless of h. In
this half-magnetization plateau phase, each tetrahedron
has three long FM and three short AF bonds, giving rise
to an overall trigonal lattice distortion. For any finite
value of b the plateau is extremely broad. Its width
shrinks linearly as b ! 0; for h=J � 4� 16b we find a
transition into a coplanar 2:1:1 canted state with mixed E
and T2 symmetry, and for h=J � 4	 8b, a transition into
a coplanar 3:1 canted phase with trigonal symmetry for
h=J � 4	 8b. Both transitions are of second order.

Finally, for 8J > h > 6J, there is a transition into a
fully saturated FM in which the lattice regains overall
cubic symmetry. In the absence of longer range exchange
interactions, the two lowest lying spin wave branches of
the FM phase are local in character and dispersionless.
For b < 3=38, the transition from the 3:1 canted phase
into the FM is of second order and occurs on the line
h=J � 8� 16b. For b > 3=38 the transition becomes first
order, and for b > 1=4 it is energetically favorable to
197203-2
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FIG. 4 (color online). Maximal values of the second order
invariants �2

E and �2
T2

for classical spins as a function of the
magnetization per site M. A ridge (dashed line) divides three
dimensional from coplanar spin configurations. Spin ordering
patterns are shown for the symmetrical cases of �2

E � 0 and
�2

T2
� 0.
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FIG. 3 (color online). Magnetization as a function of mag-
netic field for b � 0 (straight line) to b � 0:24 (robust plateau)
in steps of 0.03.
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make a transition directly from the collinear plateau
phase into the FM.

In order to understand why these particular phases are
stable, we now turn to the symmetry analysis. For clas-
sical spins, coupled to uniform lattice distortion, we need
only consider the symmetries T d of a single tetrahedron
[16]. The bond variables �i;j, which describe changes in
the length of the six edges of the tetrahedron, transform
according to the A1, E, and T2 irreducible representations
(irreps) of T d:
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(4)

In the �E � f�E;1; �E;2g irrep (which includes tetragonal
distortions of the lattice), opposing pairs of bonds deform
with the same sense. In the �T2

� f�T2;1; �T2;2; �T2;3g irrep
(which includes trigonal distortions), opposing pairs of
bonds deform with the opposite sense. Exactly analogous
representations for spins can be obtained by substituting
with SiSj for �i;j and �A1

for �A1
, etc.

In terms of these variables, the Hamiltonian for a
single tetrahedron embedded in the lattice is given by

H � 2
���
6

p
J�A � 2�J��A1

�A1
	�E�E 	�T2

�T2
�

	K��2
A 	 �2

E 	 �2
T2
� � 4hM; (5)

where �R�R and �2
R � �R�R are second order invariants

of the R � A1;E; and T2 irreps. An analysis of Eq. (5)
in the absence of magnetic field was given in Refs. [13,14].
In all of the cases considered by these authors, only the E
irrep is relevant. However, once a magnetic field is ap-
plied, both the A1 and T2 irreps have an important role to
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play. For classical spins, Eq. (5) reduces to

E0 � 2J�
���
6

p
�A1

� bA1
�2

A1
� bE�2

E � bT2
�2

T2
� � 4hM:

(6)

For pure nearest neighbor interaction [cf. Eq. (1)] bA1
�

bE � bT2
� b. In general, however, these parameters

need not be equal.
Using the fact that �A1

� 8�M2 � 1=4�=
���
6

p
, we see that

the lowest energy configuration at a given magnetization
is that for which bE�

2
E 	 bT2

�2
T2

takes on its maximal
value. The surface of maximal values of these second
order invariants is shown in Fig. 4. The limiting cases
�T2

! 0 or �E ! 0 have a simple analytic form

max
�2

T2�0
�2

E � 16�1�M2�2=3; (7)

max
�2

E�0
�2

T2
�

(
32
3 �1�M2�2; if 1=2 � M � 1;
32
3 M

2�1	M�2; if 0 � M � 1=2;
(8)

and the stability of the half-magnetization plateau origi-
nates in the sharp cusp in the maximal value of �2

T as a
function of M. Provided that bE < 2bT2

, this singular
point (which corresponds to the trigonal lattice distortion
shown in Fig. 1(b)), minimizes the energy for a finite
range of values of magnetic field, and the phase diagram
is qualitatively that of Fig. 2. Conversely, for values of
bE > 2bT2

, T2 order is not realized for any value of h.
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As the magnetization of the system increases, so will
the average bond length, and for classical spins coupled to
a uniform lattice distortion, the volume of the unit cell is
a monotonically increasing function of applied field

�V
V

�

���
3

2

s
�A1

	
1

2
�2
A1

�
7

4
�2
E �

3

4
�2
T2
: (9)

From this expression we learn that: (i) as �A1
/ �A1

, the
jumps in magnetization will have their counterpart in
volume change; (ii) the application of hydrostatic pres-
sure will soften the E mode relative to the T2 mode, thus
extending the region of the tetragonal phase.

The scenario which we have presented is the simplest
under which lattice distortion can stabilize a magnetiza-
tion plateau in a spinel oxide. Needless to say, the situ-
ation in a real spinel oxide may be much more complex
than that described above. Naive estimates suggest that
there are of order 1:3N=2 collinear states with three up and
one down spins in each tetrahedron, where N is the
number of spins in the lattice. In principle, any of these
may couple to phonon modes. Arbitrarily complex ex-
change interactions, competing with arbitrarily complex
elastic energies, may give rise to an arbitrarily complex
plateau state —or none at all. Nonetheless, our model
captures the essential features of the high field magneti-
zation of CdCr2O4 and HgCr2O4 [11]. For these Cr spinels,
t2g shell is full and the eg shell empty, so we may safely
neglect the effects of orbital degeneracy [17]. The theory
may also be applicable to ZnCr2O4, although the high
value of J in this compound makes verification difficult.

Chromium spinels exist as chalcogenides as well as
oxides [18]. The chalcogenides have weaker and predom-
inately FM interactions, and are, therefore, less likely
a priori to exhibit a half-magnetization plateau. How-
ever the competition between FM and AF interactions is
already present in oxide materials. We have examined the
role of next-nearest-neighbor exchange J2 within spin
wave theory, the minimization of the energy of small
clusters, and an extension of the symmetry analysis pre-
sented above. For AF J2, bT2

> bE, and the stability of the
trigonal half-magnetization plateau phase is enhanced.
FM J2, on the other hand, drives the system towards
lattice distortions (and associated plateau states) at finite
q. It is also worth noting that the strength and sign of
exchange interactions in oxides and chalcogenides can be
very sensitive to bond angle. As written, Eq. (1) does not
allow for the rotation of neighboring tetrahedra at fixed
bond length. Such modes will be important at finite q and
may lead to a magnetostriction (i.e., decrease in the
volume of the unit cell at in applied field). The necessary
extension of our theory to treat these cases is, in princi-
ple, possible but lies beyond the scope of the present
Letter.

We conclude with a few comments on the role of fluc-
tuations. In constructing a theory of a half-magnetization
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plateau stabilized by lattice distortion we have assumed
static spin order. Since both quantum and thermal fluctu-
ations in frustrated magnets favor collinear spin configu-
rations [19], these will further contribute to the stability
of the magnetization plateau. If we consider Eq. (3) as an
effective Hamiltonian, the coefficient b will have con-
tributions fluctuation effects as well as lattice distortion
[20]. It may also have contributions of a purely electronic
origin [21]. However, we have performed Monte Carlo
simulations of Eq. (1) for classical spins in the absence of
coupling to the lattice, and these suggest that any plateau
stabilized by ‘‘order from disorder’’ effects alone will be
at least as fragile as that seen in the kagome lattice [9].
The remarkable width of the half-magnetization plateaus
observed in CdCr2O4 and HgCr2O4 —which extend over
many tesla—leads us to the conclusion that lattice dis-
tortion plays a crucial role in these systems.
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