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Superhard Cubic BC2N Compared to Diamond

Yi Zhang,1 Hong Sun,1,2 and Changfeng Chen2

1Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
2Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, USA

(Received 7 May 2004; published 4 November 2004)
195504-1
Recent experiments claimed successful synthesis of cubic boron-carbonitride compounds BC2N with
an extreme hardness second only to diamond. In the present Letter, we examine the ideal strength of
cubic BC2N using first-principles calculations. Our results reveal that, despite the large elastic
parameters, compositional anisotropy and strain dependent bonding character impose limitation on
their strength. Consequently, the hardness of the optimal BC2N structure is predicted to be lower than
that of cubic BN, the second hardest material known. The measured extreme hardness of BC2N
nanocomposites is most likely due to the nanocrystalline size effect and the bonding to the surrounding
amorphous carbon matrix. This may prove to be a general rule useful in the quest for new superhard
covalent materials.
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The close similarity in the phase diagram and struc-
tural characteristics of diamond and cubic BN has led to
the anticipation that zinc-blende-structured cubic boron-
carbonitride (c-BCN) may form new superhard and
superabrasive materials. Considerable efforts have been
made in recent years to synthesize [1–5] and describe [6–
10] possible c-BCN structures. Two recent experiments
have reported [4,5] successful synthesis of a cubic BC2N
phase that is harder than cubic BN, the second (to dia-
mond) hardest material known. This claim has been
corroborated by the calculated [10] bulk modulus and
shear moduli of BC2N that exceed those of cubic BN; it
was further supported by a recently developed empirical
theory [11]. However, a closer examination of the situ-
ation reveals that several crucial issues need more careful
investigation before this new order in material hardness
can be declared. On the experimental side, the nanoin-
dentation hardness measurements [4,5] were made on
cubic BC2N nanocomposites; the measured hardness is
not expected to directly reflect that of the pure BC2N
phase. In view of this, it is important that theoretical
studies establish accurate results on the mechanical
strength for pure BC2N phases. On the theoretical side,
it is known that bulk and shear moduli do not necessarily
give an accurate account for material hardness. This is
because these elastic parameters are evaluated at the
equilibrium structure, and material deformation associ-
ated with the hardness measurement occurs at finite
strains where bonding characteristics may change signifi-
cantly. Empirical formulations based on equilibrium
charge and bond densities may fail for the same reason.
A more stringent test is provided by the ideal strength,
i.e., the stress at which a perfect crystal becomes me-
chanically unstable [12,13], that sets an upper bound for
material strength.
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In this Letter, we report on the first study of the ideal
strength of cubic BC2N and cubic BN using first-
principles total-energy calculations. The stresses along
various inequivalent crystallographic directions are eval-
uated to determine the weakest link that sets the limit on
material strength. In addition, we carry out dynamic
phonon calculations to search for possible inhomogene-
ous deformations that have been shown to be important
for understanding anomalous material hardness [14–16].
The calculated results demonstrate that the hardest cubic
BC2N phase has an ideal strength that is appreciably
lower than that of cubic BN. The effects of the nano-
crystalline size and the bonding with the amorphous
carbon matrix in BC2N nanocomposites likely play a
crucial role in producing the extreme hardness measured
in experiments. The present results provide important
insights into the atomistic origin of the structural defor-
mation mechanisms and the limits they impose on the
strength of cubic BC2N.

The total-energy calculations have been carried out
using the local-density-approximation (LDA) pseudo-
potential scheme with a plane-wave basis set [17–19].
The norm-conserving Troullier-Martins pseudopoten-
tials [20] were used with cutoff radii of 1.3, 1.3, and
1.5 a.u. for N, C, and B, respectively. The exchange-
correlation functional of Ceperley and Alder [18] as pa-
rametrized by Perdew and Zunger [21] was used. The
total energy of the structures was minimized by relax-
ing the structural parameters using a quasi-Newton
method [22]. The total-energy and stress calculations
used an eight-atom zinc-blende-structured unit cell, an
8� 8� 8 Monkhorst-Pack [23] k-point grid, and an
80 Ry energy cutoff. The error in the calculated stresses
due to the energy cutoff and k-point grid was less than 0.1
GPa based on convergence tests. The quasistatic ideal
 2004 The American Physical Society 195504-1
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FIG. 1. The calculated tensile stresses in the body diagonal
directions for diamond, cubic BN (c-BN) and two lowest-
energy cubic BC2N phases, BC2N-1 and BC2N-2, with different
local bonding environments (see Fig. 2). The results for dia-
mond, c-BN, and BC2N-2 are isotropic in all h111i directions,
while those for BC2N-1 are highly anisotropic.
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tensile strength and relaxed loading path in the various
directions was determined using a method described
previously [24,25]. The lattice vectors were incrementally
deformed in the direction of the applied stress. At each
step the structure was relaxed such that all the compo-
nents of the Hellmann-Feynman stress tensor orthogonal
to the applied stress were less than 0.1 GPa. Phonon modes
of the crystal structure were calculated with the linear
response theory using the ABINIT code [26].

For the eight-atom BC2N unit cell there are a total of
8!=�2!�24! � 420 different configurations. Fortunately,
only seven configurations are topologically different
due to the high symmetry of the zinc-blende-structured
lattice [10]. We have performed detailed calculations for
all seven structures with a rich variety of local chemi-
cal bonding environments which play a crucial role in
determining their ideal strength. Below we will present
results for five cubic BC2N structures, numbered one
through five. Of the two structures left out, BC2N-6 has
very similar characteristics as BC2N-5 and BC2N-7 has
the lowest density and is unstable due to phonon soften-
ing [27].

It has been shown [28] that the dominant failure mode
in diamond is tensile in nature and the h111i direction is
the weakest link that sets the limit on the ideal strength
and hardness. This is also expected to be the case in cubic
BN and BC2N that have similar structural and bonding
characters. We have calculated tensile strengths for all
three materials. The results are 223.3, 126.3, and 92.8 GPa
in h001i, h011i, and h111i directions, respectively, for
diamond; these are in excellent agreement with previous
calculations [28]. The corresponding data are 195.0, 94.0,
and 65.0 GPa for cubic BN and 153.3, 80.1, and 55.7 GPa
for BC2N-2 (the same order found for all other BC2N
phases). Consequently, we will focus below on tensile
stresses in the h111i direction for the ideal strength
analysis. We have also calculated the ideal shear strength
for all three materials in the weakest sliding planes. The
results are 96.3 GPa for diamond, in excellent agreement
with previous data [29], 70.5 GPa for c-BN, 68.8 GPa for
BC2N-2, and 42.1 GPa for BC2N-1. Since the tensile
strengths are lower than the shear strengths in all BC2N
phases, the deformation/failure of the tensile type will be
dominant (or easier) under general loading conditions.
Moreover, lower in both shear and tensile strengths com-
pared to cubic BN means cubic BC2N should be less hard.
We present below a detailed analysis of the bonding
characters in cubic BC2N.

In Fig. 1 we present the calculated stress-strain results
for diamond, cubic BN, and the two lowest-energy BC2N
phases. Several interesting features are noticed: (i) the
lowest-energy BC2N-1, which has been almost exclu-
sively used in previous studies of cubic BC2N [6–10],
shows significant anisotropy in stresses along different
body diagonal directions. The ratio of the larger (in the
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[111] and [111] directions) and smaller (in the [111] and
[111] directions) peak stresses is 79.1/35.0 GPa = 2.26.
The lower value of 35.0 GPa means this structure cannot
be a superhard material as previously suggested [11].
(ii) the initial slope of the stress-strain curve (up to 1%
strain) for BC2N-1 is isotropic and the value is even
slightly higher than that of cubic BN. However, at larger
strains the stress in the [111] direction quickly weakens
and a breakdown results at about 6% strain. This strain
dependent bonding character highlights the deficiency of
common criteria for material hardness prediction using
structural (bonding) characters at or near equilibrium.
Quantities such as bulk and shear moduli or equilibrium
bond and charge densities can lead to significant over-
estimates of hardness [11]. This is because the structural
deformation associated with the hardness measurement
occurs at finite (large) strain and the rise of the stress
usually slows down with increasing strain. (iii) we find
that BC2N-2, which is energetically almost degenerate
with BC2N-1 but has subtle differences in local bonding
structures, demonstrates better overall strength. Although
its maximum stress is not as high as that of BC2N-1 in the
[111] direction, its stress-strain results are isotropic in all
h111i directions. The peak stress of 55.7 GPa makes it the
highest-strength BC2N structure (see below), which
should place it as the third hardest pure phase material
after only diamond and cubic BN, which have ideal
195504-2
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strengths (in h111i directions) of 92.8 GPa and 65.6 GPa,
respectively.

To examine the mechanisms and trends for structural
deformation in cubic BC2N, we have carried out detailed
stress-strain and bond-length-strain calculations. Results
in the direction with the minimum peak stress in each
case are presented in Fig. 2. It is seen that the N-C bond is
the weakest link and breaks up first under strain in all
cases except for BC2N-5, which contains broken N-N
bonds [10]. In BC2N-1, the weaker N-C and B-C bonds
are all aligned in the [111] (and the equivalent [111])
direction while the stronger C-C and B-N bonds are all in
the [111] (and [111]) direction. This explains the large
anisotropy in the ideal strength in BC2N-1. In BC2N-2,
different bonds are evenly distributed in all h111i direc-
tions, leading to the isotropic strength distribution.
BC2N-3 represents an interesting case where all C atoms
occupy one fcc sublattice and B and N atoms occupy
another. It contains only N-C and B-C bonds, the same
weak links as in BC2N-1; however, it has a slightly
different charge distribution due to differences in local
bonding environments, resulting in an enhanced peak
stress of 46.3 GPa. BC2N-4 and BC2N-5 contain one
B-B bond and one N-N bond, respectively. In BC2N-4
the N-C bonds are still the weakest link and dominate the
deformation process; combined with the weak B-B bonds
in the same weak direction, it leads to a small peak stress
of 21.9 GPa. In BC2N-5 the broken N-N bonds signifi-
cantly reduce the bond density in the [111] direction,
resulting in the breaking of the remaining C-C bonds at
a small (about 3%) strain with a peak stress of only 6 GPa.
These results demonstrate that BC2N-2 has the highest
overall strength and, therefore, should be the hardest
among all the cubic BC2N phases.

A careful examination of the bonding structures re-
veals that along the weak directions there is always a
global alignment of the weak bonds that set off collective
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FIG. 2 (color online). Calculated stress-strain curves for five BC2
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bond-breaking processes at large strains. In BC2N-1, the
weakest N-C bonds form zigzag chains in the (101) plane;
the B-C bonds form separate (parallel) zigzag chains in
the same plane. Under strain, the weaker N-C chains
break first. In BC2N-2, the weakest link is composed of
the zigzag chains with alternating weak N-C and stronger
B-N bonds in the (101) plane (see Fig. 3). The weak N-C
bonds start to break up first under strain (see Fig. 2),
which leaves the B-N bonds vulnerable. Consequently,
the B-N bonds also start to stretch and eventually break
up before the weaker C-B bonds that are aligned in the
same direction along the applied strain but are not part of
the weak chain link. The stronger B-N bonds in this weak
chain enhances the strength of BC2N-2 over that of a pure
N-C chain as in BC2N-1. The situation in other structures
is similar. In particular, in BC2N-5 the strongest C-C
bonds break before the weaker B-C bonds since the for-
mer is part of the overall weak -N-N-C-C- chain in the
[111] direction. These results highlight the deformation
mechanism in cubic BC2N phases and provide an expla-
nation for the experimentally measured high values of
hardness for cubic BC2N nanocomposites [5] where
grains of cubic BC2N crystallites of a few nanometers
in diameter are embedded in an amorphous carbon ma-
trix. In such an environment weak bonds can never line
up in any direction for more than a few bond lengths. The
surface strain and interface with the structurally very
strong amorphous carbon matrix are expected to enhance
the structural strength. All these impose limits on the
collective structural deformation. Furthermore, random
orientations of BC2N nanocrystallites also increase the
overall strength due to the contributions from other
stronger (e.g., h100i and h110i) directions. However,
BC2N with the zinc blende structure and randomly dis-
tributed B, C, and N atoms are not expected to enhance
hardness since the random bond distribution will inevi-
tably introduce N-N and/or B-B bonds that are energeti-
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FIG. 3 (color online). The bonding structure in the (101)
plane of BC2N-2, showing the weak links in the [111] direction.
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cally unfavorable and result in broken bonds and reduced
density [10]. All these will reduce material strength.
Therefore, synthesis of nanocomposites instead of the
traditional crystalline form of material may be a more
fruitful route in the quest for new superhard materials.

We have performed dynamic phonon calculations on
the strained (up to the maximum stress) structure of
BC2N-2 and found no phonon instabilities. This lack of
acoustic phonon softening near the zone center up to the
peak stress is the result of the low symmetry caused by
the structural distortion. This affirms the assignment of
BC2N-2 as the hardest pure phase cubic BC2N structure.
Nanocomposites with BC2N-2 as the core nanocrystal-
lites should result in the best structural character. It
remains unclear whether the experimentally prepared
samples [5] indeed contain BC2N-2, instead of BC2N-1
as previously thought [6–10]. Another important open
issue is how to better design synthesis routes to distin-
guish BC2N-1 and BC2N-2.

In summary, we have performed first-principles studies
of the ideal strength of cubic BC2N. The calculations
reveal that (i) most cubic BC2N phases exhibit significant
anisotropy in their ideal strengths in body diagonal di-
rections due to compositional variations despite the over-
all cubic symmetry, (ii) the bonding characters at large
strains are different from those near the equilibrium
structure, and (iii) global alignment of weak bonds dic-
tates the weak direction that sets the limit on the ideal
strength. These factors explain why cubic BC2N is weaker
than cubic BN despite the fact that the former has the
higher elastic parameters. The optimal BC2N structure is
predicted to be behind diamond and cubic BN in hard-
ness. The higher hardness values measured on cubic BC2N
nanocomposites are most likely due to the nanocrystal-
line size (surface/interface) effect and the bonding with
195504-4
the amorphous carbon matrix in these composite materi-
als. Their effects on the hardness of nanocomposite ma-
terials need further investigation.
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