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Universal Breakdown of Elasticity at the Onset of Material Failure
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1Department of Physics, University of California, Santa Barbara, California 93106, USA
2Lawrence Livermore National Lab, CMS-MSTD, Livermore, California 94550, USA

3LMDH, Universite Paris VI, UMR 7603, 4 place Jussieu, 75005 Paris, France
(Received 6 May 2004; published 2 November 2004)
195501-1
We show that, in the athermal quasistatic deformation of amorphous materials, the onset of failure is
accompanied by universal scalings associated with a divergence of elastic constants. A normal mode
analysis of the nonaffine elastic displacement field allows us to clarify its relation to the zero-frequency
mode at the onset of failure and to the cracklike pattern which results from the subsequent relaxation of
energy.
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FIG. 1 (color online). Stress (top) and shear modulus (bottom)
for a small strain interval about a strain of 0.3. Left: Fixed
strain steps of size 10�4. Right: Convergence to the yield point.
Experiments on nanoindentation of metallic glasses
[1], on granular materials [2] and on foams [3], demon-
strate that at very low temperature and strain rates the
microstructural mechanisms of deformation involve
highly intermittent stress fluctuations. These fluctuations
can be accessed in molecular dynamics simulations, but
are best characterized numerically via ‘‘exact’’ imple-
mentation of athermal quasistatic deformation: alternat-
ing elementary steps of affine deformation with energy
relaxation [4] permits one to constrain the system to
reside in a local energy minimum (inherent structure) at
all times. As illustrated in Fig. 1, macroscopic stress
fluctuations arise from a series of reversible (elastic)
branches corresponding to deformation-induced changes
of local minima. These branches are interrupted by sud-
den irreversible (plastic) events which occur when the
inherent structure annihilates during a collision with a
saddle point [5]. These transitions constitute the most
elementary mechanism of deformation and failure for
disordered materials at low temperature.

Using this quasistatic protocol, recent studies of both
elasticity [6] and plasticity [5] could identify important
properties of elastoplastic behavior which arise solely
from the geometrical structure of the potential energy
landscape. Tanguy et al. [6] have observed that, following
reversible (elastic) changes of the inherent structures,
molecules undergo large scale nonaffine displacements.
They have shown these nonaffine displacements to be
related to the breakdown of classical elasticity at small
scales and to quantitative differences between measured
Lamé constants and their Born approximation. Malandro
and Lacks [5] have shown that the destabilization of a
minimum occurs through shear-induced collision with a
saddle. At the collision, a single normal mode sees its
eigenvalue going to zero. Building on this work, we
studied the irreversible (plastic) event following the dis-
appearance of an inherent structure: subsequent material
deformation in search of a new minimum involves non-
local displacement fields—in the likeness of nascent
cracks—controlled by long-range elastic interactions [7].
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Several molecular displacement fields thus appear to be
closely related to the geometrical structure of the poten-
tial energy landscape: (i) nonaffine displacements along
elastic branches, (ii) the single normal mode controlling
the annihilation of an inherent structure, and (iii) the
overall deformation occurring during an irreversible
event. In order to piece together a complete picture of
elastoplasticity at the nanoscale, we need to understand
the relation between these different fields and ask how
elastic behavior breaks down at the onset of failure. It is
thus a study of incipient plasticit, the onset of irreversible
deformation, that we wish to perform. Here the structural
disorder is expected to control the onset of failure: this
situation is somehow opposite to homogeneous defect
nucleation in crystals [8], where failure is controlled by
Hill’s continuum condition [9].

We base our approach on exact microscopic expressions
for the nonaffine corrections to elasticity in disordered
solids [10,11], which have been entirely overlooked in
recent works. Here we put such analytical tractations in
perspective with the recent numerical developments. We
derive an exact formulation for the nonaffine displace-
2004 The American Physical Society 195501-1



FIG. 2 (color online). Left: The force response to simple
shear, ~
, at a strain configuration, 
 � 0:2945, or 
c � 
�
10�4. Right: The nonaffine velocity (or ‘‘displacement’’) field,
d~r
d
 for the same state as shown on the left.
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ment fields, and construct a normal mode decomposition
therefrom. This analytical framework permits us to evi-
dence that the lowest frequency normal mode dominates
the nonaffine elastic displacement field close to a plastic
transition. We then show that at any plastic transition
point, the mechanical properties display a singular, uni-
versal behavior associated with a divergence of the elastic
constants. A normal mode analysis of the subsequent
cascade shows that the entire reconfiguration is domi-
nated by the low frequency modes only in its early stages.

We consider a molecular system in a periodic cell. The
geometry of the cell is determined by the matrix h whose
columns are the Bravais vectors [12,13]. The affine de-
formation of the cell between configurations h0 and h is
characterized by the Green-St. Venant strain tensor, � �
1
2 ��h

�1
0 �T � hT � h � h�1

0 � 1�, which governs the elongation
of a vector �~x! ~x, as ~x2 � �~x2 	 2�~xT � � � �~x. As the energy
functional generally depends only on the set of interpar-
ticle distances, it can be parametrized as U�f�~rig; ��,
where f�~rig are the positions of the particles in a reference
cell [10,14]. Varying � for fixed f�~rig corresponds to an
affine displacement of the molecules in real space.

To start, let us contemplate more closely the athermal,
quasistatic algorithm. Deformation, ��
�, is enforced by
moving the Bravais axes of the periodic cell; 
 is intro-
duced as a rescaled coordinate to measure the deforma-
tion from some reference state. In practice, ��
�
corresponds to either pure shear or pure compression.
Formally, the limit h0 � h (or 
! 0) is often appropriate
to define stresses and elastic constant around a (possibly
stressed) reference state. Once a choice of h0 is made, the
algorithm tracks in the reference cell a trajectory f�~rig�
�,
which is implicitly defined by demanding that the system
remain in mechanical equilibrium [10,11]:

8 i; ~Fi 
@U

@�~ri

��������
�f
�~rjg; 
� � ~0: (1)

Starting at mechanical equilibrium at 
 � 0, f�~ri�
�g is a
continuous function of 
 on some interval �0; 
c�. At 
c,
the local minimum collides with a saddle point. [5]

An equation of motion for �~r � f�~ri�
�g is obtained
by derivation of (1) with respect to 
. Denoting
H � �@2U=@�~ri@�~rj�, ~� � �@2U=@�~ri@
�, and ~��� �

�@2U=@�~ri@����, we find

d�~r
d


� �H�1 � ~� � �H�1 �
X
��

~���
d���
d


: (2)

This relation holds for any 
 2 �0; 
c�. In the limit h!
h0, H is the dynamical matrix. To invert H , translation
modes must be eliminated by fixing the position of a
molecule. d�~r=d
 is a rescaled ‘‘velocity’’ of molecules
in quasistatic deformation. It defines the direction (in
tangent space) of the nonaffine displacement field ob-
served by Tanguy et al. and can be directly evaluated by
195501-2
solving Eq. (2) without resorting to quadruple precision
minimization [6].

Here, we illustrate these ideas with numerical simula-
tions of a two-dimensional bidisperse mixture of parti-
cles interacting through a shifted Lennard-Jones
potential [6]. Particle sizes rS � rL sin

�
10 = sin

�
5 and a

number ratio NL=NS �
1	

��
5

p

4 are used to prevent crystal-
lization; the simulation cell is 50� rL in length, yielding
4938 particles. We have also performed simulations on
Hertzian spheres to check that it yielded results consis-
tent with those presented here. Typical patterns of the
fields ~
 and d�~r=d
 in (steady) simple shear deformation
are shown Fig. 2: the apparent small scale randomness of

the vector ~
 is in sharp contrast with the large vortexlike
structures displayed by the nonaffine velocity field
d�~r=d
. To understand the randomness of ~
, note that
~
i � @ ~Fi=@
 is the force response on molecule i after
an elementary affine deformation of the system: it de-
pends only on the configuration of the molecules with
which molecule i interacts, hence an �-dependent mea-
sure of the local disorder of molecular configurations. We
checked that spatial correlations decay very fast in the
field ~
: in the following discussion, the short-range ran-
domness of the field ~
 allows us to interpret it as noise.

An analytical expression for the bulk elastic constants
derives along similar lines [10,11]. The first derivative of
the potential with respect to the components of � defines
the thermodynamic stress, t: t�� � 1

V0

dU
d���

� 1
V0

@U
@���

. The
total derivative indicates derivation while preserving me-
chanical equilibrium, the second equality results from
Eq. (1), and V0 is the volume of the simulation cell. The
second (total) derivative of the energy gives the elastic
constants [14]:

C���� �
1

V0

�
@2U

@���@���
	

X
j

@2U

@�~ri@���
�
d�~ri
d���

�
: (3)

We recognize the first term as being the Born approxi-
mation CBorn

����. The second term accounts for the nonaf-
fine corrections, and reads ~C������ 1

V0

~
�� �H
�1 �

~
��. Similarly, the second derivatives of the energy,
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following any generic deformation ��
�, can be written as

d2U

d
2
�
@2U

@
2 �
~
 �H�1 � ~
: (4)

For an isotropic material, the elastic constants can be
written as C���� � ������� 	�������� 	 �������,
which define the Lamé constants � and �. In order to
estimate these constants, it is not necessary to evaluate
all the components of the tensor ~
 � � ~
���, but only two
of its projections ~
, e.g., for pure shear and pure com-
pression, and use Eq. (4). In Eq. (4) the correction to the
Born term is negative definite: quantities such as the shear
modulus, �, or the compressibility, K � �	�, are nec-
essarily smaller than the Born term, while this is not
necessarily true of � � K �� alone as it does not, by
itself, correspond to any realizable mode of deformation.
This is consistent with the numerical observations by
Tanguy et al. [6] in Lennard-Jones systems.

Next, we perform a normal mode analysis of the fields
~
. Denoting ~�p the eigenvectors of the dynamical ma-
trix (normal modes), and �p the associated eigenvalues,
the vector ~
 can be decomposed as ~
 �

P
p"p ~�p, with

"p � ~
 � ~�p. (If ~
 is a random field, the variables "p are
random.) From this decomposition, expressions can be
obtained for the nonaffine direction and for the nonaffine
contribution to elasticity:

d�~r
d


� �
X
p

"p
�p

~�p and C� � �
X
p

"2p
�p
: (5)

We now concentrate on the behavior of the shear modu-
lus at incipient plasticity, as shown in Figs. 1 and 3.
Malandro and Lacks have shown numerically that at
the onset of a plastic event a single eigenfrequency goes
to zero [5]. We denote ~��

�
� the first nonzero normal
mode; in two dimensions, it is the third in the spectrum.
Close to failure (
! 
c), ���
� ! 0; hence ~��

�
c� must
dominate the nonaffine direction d�~r=d
. This is true if
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FIG. 3. Left: Relative participation of the lowest normal
mode in the nonaffine elastic displacement field, �� �

:

�"�=���2=
P
p�"p=�p�

2 (dotted line); lowest eigenvalue of the
dynamical matrix (solid line); next several eigenvalues (dashed
line). Right: In log-log scale (as a guide to the eye, the thick
black line is

���������������

c � 


p
): 1=� (circles); lowest eigenvalue

(squares); next several eigenvalues minus their terminal values
(diamonds).
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and only if the quantity "��
� � ~��
�
� � ~
�
� does not

vanish at the yield point.
In order to check this scenario, we have performed

numerical simulations of the same 2D binary mixture
described above. Minimization was performed using a
standard conjugate gradient approach, but by first con-
verging to the local inflection point during the line
search to avoid escaping the shrinking basin. Termi-
nation occurred when the maximum force was 10�8. We
observe that (i) ~�� is localized close to failure, while
(ii) ~
�
� ! ~
�
c� remains noisy and weakly correlated
with the normal modes. As a consequence of this obser-
vation, "��
� has a random but typically nonzero limit
when 
! 
c. The nonaffine field is dominated by
�"��
c�=���
� � ~��

�
c� and the nonaffine correction
to elasticity by ~����"��2=��, which diverges toward
�1 (see Fig. 1). In contrast, the Born term, which de-
pends on the pair correlation only, does not diverge. Since
� � �Born 	 ~�, on approaching failure, the system
reaches a point 
0 <
c at which ~� � ��Born, whence
� vanishes. For 
 2 �
0; 
c�, the shear stress is a decreas-
ing function of 
: the material is unstable to any constant
applied stress. This region is accessible to us because
deformation—and not stress—is prescribed.

In order to understand more specifically how the elastic
constants behave close to 
c, let us consider the functions
�p�
�, which are continuous on a small interval close to

c (the second derivatives of the potential are supposed to
be regular). Close to the yield point, 
c, the deformation is
dominated by the lowest normal mode: �~r�
� � �~r�
c� �
x�
� ~��

�
c�. (We project the deformation on the mode ~��

at the yield point.) From this relation and (5), we obtain
the dominant contribution: dx=d
��"��
c�=���
�.
The coordinate x measures a true displacement in con-
figuration space: we expect that no singular behavior
occurs in this rescaled coordinate whence, ���x� should
vanish regularly, ���x� � ax close to x � 0. Therefore,
x�
� �

����������������������������������������
2"��
c��
c � 
�=a

p
. This relation controls en-

tirely the behavior of all observables when approaching
the yield point: any observable Awhich behaves regularly
as a function of x (any regular function of molecular
configurations) ‘‘accelerates’’ close to the yield point:
dA=d
� 1=

���������������

c � 


p
. In particular, we obtain d�~r=d
�

~�p=
���������������

c � 


p
and ���
� �

�����������������������������
2a"��
c � 
�

p
, whence, ~��

��"��3=2=
������������������������
2a�
c � 
�

p
. We could observe these scalings

numerically by a careful approach to the yield point, as
shown Fig. 3. A similar divergence is observed for the
compression modulus, but with a different prefactor, de-

termined by the normal mode decomposition of the ~

field associated with pure compression.

We now turn to the overall plastic event following fail-
ure (see Figs. 4 and 5). We have already shown, in similar
atomistic systems, that any single plastic event involves
a cascade of local rearrangements [7]. Our preceding
work suggested that the overall plastic event was con-
195501-3
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FIG. 5. Evolution of the displacement field during the irre-
versible cascade corresponding to the event circled in Fig. 1.
Top: Contribution �� (solid line) of the critical mode and �p�t�
(dashed line) of the next five modes to the displacement field.
Bottom: Sum of the squares of the forces on the particles.

FIG. 4 (color online). Left: Nonaffine elastic displacement
field at a distance 
c � 
� 10�10 from the transition. Note
the quadrupolar alignment with the direction of applied strain.
Right: The local relative displacement field (the displacement
of each particle measured with respect to the average displace-
ment of its neighbors) which is incurred after the entire plastic
cascade. The solid line is a guide to the eye oriented along the
oblique Bravais axis.
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trolled by long-range elastic interactions and differed
from the displacement fields which dominate the onset
of failure. Our present normal mode decomposition al-
lows us to gain more insight into this process. Writing
�~r�t� � �~r�0� �

P
p�"p�t� ~�p�
c�, we extract the quantities

�p �
:
��"p�t��2=

P
p��"p�t��

2, which are shown Fig. 5 for
the lowest frequency modes. To trigger the relaxation, we
shear the system forward by a small amount of shear, 
�

c � 10�5. The initial affine displacement serves as a
perturbation and projects randomly on the normal modes,
whence the contributions �p start around zero. We ob-
serve that (i) the initiation of the cascade is clearly
dominated by the critical mode, (ii) this effect suddenly
stops before reaching the first peak in

P
iF

2
i (this peak

corresponds to the first inflection point of energy versus
minimization step), and (iii) the subsequent displacement
appears to be random, when projected on the lowest part
of the spectrum, indicating that low frequency normal
modes are irrelevant for the latter stages of plastic failure.

The detailed picture of nascent irreversibility which
emerges from our work departs from the traditional view-
point proposed by Argon and co-workers, which has been
the basis of most theoretical approaches for decades
[15,16], where elementary events are supposed to be
reversible and independent, irreversibility being expected
to arise from the release of stress when, by chance,
deformations percolate through neighboring zones. We
see here that the transitions between inherent structures
are irreversible. Our previous study of the distribution of
energy drops during these transitions has shown that the
scalings are not consistent with a percolation of indepen-
dent events: cascades are structured processes comprising
correlated events [7]. Even if part of the traditional view-
point may be recovered at nonzero temperatures, the
transition between inherent structures is an essential
brick in the construction of theories of plasticity. It thus
seems that future theories will have to address, at some
195501-4
point, the spatial organization described here, and the
correlated nature of irreversible events.
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