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Beat-Wave Excitation of Plasma Waves Based on Relativistic Bistability
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A nonlinear beat-wave regime of plasma wave excitation is considered. Two beat-wave drivers are
considered: intensity-modulated laser pulse and density-modulated (microbunched) electron beam. It is
shown that a long beat-wave pulse can excite strong plasma waves in its wake even when the beat-wave
frequency is detuned from the electron plasma frequency. The wake is caused by the dynamic bistability
of the nonlinear plasma wave if the beat-wave amplitude exceeds the analytically calculated threshold.
In the context of a microbunched beam driven plasma wakefield accelerator, this excitation regime can
be applied to developing a femtosecond electron injector.
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Beat-wave excitation of electron plasma waves contin-
ues attracting significant attention as a basic nonlinear
plasma phenomenon, and as a viable approach to plasma-
based particle acceleration [1–4]. Beat-wave excitation
mechanism is realized when the driver intensity (laser or
particle beam) is modulated with the temporal periodic-
ity of the plasma wave. The linear one-dimensional the-
ory of the beat-wave-driven plasma wave generation is
well understood [1,5], and its most important predictions
are as follows. First, the effectiveness of plasma wave
excitation is strongly dependent on the difference between
the beat-wave frequency !B and plasma wave frequency
!p �

����������������������
4�e2n0=m

p
(where �e and m are the electron

charge and mass, and n0 is the plasma density): the
smaller is the frequency detuning �! � !B �!p, the
larger is the resulting plasma wave inside the beat wave.
Second, only if the beat-wave pulse is short enough for its
bandwidth to be comparable to �!, an appreciable
plasma wave is left in its wake.

In this Letter I demonstrate that these conclusions are
no longer valid when the relativistic nonlinearity of a
plasma wave is accounted for. In particular, a strong
plasma wave can be excited in the wake of a relatively
long beat-wave pulse of duration tL � 1=�! due to the
nonlinear phenomenon of dynamic relativistic bistability
(RB) [6]. Linear estimates of the plasma wave amplitude
fail when the beat-wave amplitude exceeds the detuning-
dependent critical strength. As the time-dependent beat-
wave strength increases and exceeds the critical value,
significant pulsations of the plasma wave amplitude oc-
cur. These pulsations indicate that significant energy ex-
change takes place between the plasma wave and the
driver. This effect can be exploited in a plasma wakefield
accelerator driven by a microbunched electron beam [7]:
bunches in the head of the beam excite while those in the
back deplete plasma waves, thereby gaining energy.

Relativistic bistability was originally described [6] for
a magnetized electron subjected to cyclotron heating.
Applications of RB to electron cyclotron heating of fu-
sion plasmas [8,9] have been later suggested. Although
0031-9007=04=93(19)=195004(4)$22.50
the nonlinear nature of electron plasma waves has been
noted before [10–13], the RB of plasma waves has not
been explored, either as a basic phenomenon or in the
context of plasma-based accelerators.

The one-dimensional relativistic dynamics of the cold
plasma driven by a beat wave can be described using a
Lagrangian displacement of the plasma element origi-
nally located at z0: z�t� � z0 � ��t; z0�. It is assumed
that the beat wave generated by either a pair of
frequency-detuned laser beams or a modulated electron
beam is moving with the speed close to the speed of light
c, and therefore, all beat-wave quantities are func-
tions of the comoving coordinate �0 � !p�t� z=c� �
��!p�=c. Introducing the normalized displacement
~� � !p�=c and longitudinal relativistic momentum ~p �

�d~�=d�, where � �
����������������������
1� ~v2=c2

p
, equations of motion

take on the form

d~�
d�

�
~p���������������

1� ~p2
p ;

d~p
d�

� �~� � a��0� cos!�0: (1)

Assuming that j�!j 
 !p (near-resonance excitation),
transverse momentum of the plasma has been neglected

and the relativistic � factor simplified to � �
���������������
1� ~p2

p
.

The first term in the force equation is the restoring force
of the ions, and the second term signifies the beat wave
with the frequency !B � !!p. The nonlinear in � modi-
fication of the beat wave in the right-hand side of Eqs. (1)
is neglected in what follows. For a pair of linearly polar-
ized laser pulses with electric field amplitudes E1 and
E2 and the corresponding frequencies !1 and !2 �
!1 �!B, the normalized beat-wave amplitude a �
�e=mc�2E1E2=2!1!2 [10]. For a driving electron bunch
with the density profile nb � nb0 � �nb sin!�, it can be
shown that a � �nb=n0. Although arbitrary profiles of
a��� are allowed, it is assumed that jda=d�j 
 jaj. The

total energy density of the plasma wave Up=n0mc2 ����������������
1� ~p2

p
� ~�2=2 is changed via the interaction with the

beat wave. The effect of the plasma wave on the beat wave
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is neglected for the moment and addressed towards the
end of the Letter.

Although Eqs. (1) can be solved numerically at this
point, further simplification is made by assuming ~p �
u cos�!����, where u and � are slowly varying func-
tions of �. In the weakly relativistic approximation ~p2 

1 obtained by combining the terms proportional to cos!�
and sin!�:

du
d�

�
a
2
cos� (2)

u
d�
d�

� �
a
2
sin��

u
2!

�!2 � 1� 3u2=8�: (3)

Depending on the beat-wave frequency ! and the am-
plitude a, equilibrium solutions du=d� � 0 (steady am-
plitude) and d�=d� � 0 (phase-locking to the beat wave)
of Eqs. (2) and (3) can have one or three real roots. For
any !, there is a stable equilibrium point: �0 � ��=2
and u0 > 0 found as the root of the third-order polyno-
mial equation P �u0� � u0�!

2 � 1� 3=8u20� � !a. For
the most interesting !< 1 regime, additional solutions
�0 � �=2 and u0 > 0, where u0 is the positive root of
P �u0� � �!a, may be found, depending on the beat-
wave amplitude. Specifically, there are no additional
positive roots for a > acrit, where acrit � 4

���
2

p
�1�

!2�3=2=9!, and two positive roots u1;2 for a < acrit (one
of them unstable). Stable equilibrium amplitudes u0 with
�0 � �=2 (branch 1) and �0 � ��=2 (branch 3), as well
as the unstable one (branch 2) are plotted in Fig. 1 as a
function of the beat-wave strength a for ! � 0:95 (acrit �
0:02). Equilibrium bistability corresponding to branches
1 and 3 is universal for any nonlinear pendulum [6,14],
including a weakly-damped one. Equilibrium solutions
are meaningful only if the plasma wave is phase-locked
to the beat wave: d�=d� � 0. As shown below, this is not
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FIG. 1. Steady-state solutions of a driven plasma wave as a
function of the beat-wave amplitude a. Solid lines 1, 2: stable
equilibria for ! � 0:95; dashed line: unstable equilibrium for
! � 0:95; dot-dashed line: resonant excitation with ! � 1.
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the case when the peak beat-wave amplitude exceeds acrit.
Nonetheless, a dynamic RB described below occurs even
in the absence of phase locking.

Plasma response to a time-dependent (Gaussian) beat-
wave pulse a��� � a0 exp���2=�2L� (with �L � 1=
j1�!j) strongly depends on its peak amplitude a0. For
a0 < acrit, the wave amplitude u adiabatically follows
a��� along the branch 1 as indicated by arrows in Fig. 1.
The adiabaticity condition is �B�L � 1, where �B is the
bounce frequency around the equilibrium point u0 such
that P �u0� � �!a���. Linearizing Eqs. (2) and (3)
around � � �=2 and u � u0 yields �2

B � a�u2crit � u20�=

4!u0, where ucrit � 2
���������������������
2�1�!2�

p
=3 is the critical plasma

wave amplitude corresponding to the merging point be-
tween branches 1 and 2 in Fig. 1. In the adiabatic regime,
the action I � �1=4��

H
u2d� is conserved, and the sys-

tem is trapped with I � I1 � 0. Plasma wave amplitude
returns to a very small value in the wake of the beat wave,
as shown by a dot-dashed line in Fig. 2. The longer the
beat-wave pulse duration �L, the smaller the wake, be-
cause its nonvanishing amplitude is due to the adiabaticity
violation for finite �L.

For a0 > acrit, the adiabatic condition is violated as
a��� approaches acrit (noted in the context of electron
cyclotron heating [8,9]), and phase locking at �0 � �=2
is no longer possible. Thus, the transfer to branch 3
schematically shown by a vertical arrow in Fig. 1 be-
comes feasible, and the plasma wave amplitude can dra-
matically increase. In the presence of a finite plasma wave
damping, this indeed happens: the subsequent decrease of
the beat-wave amplitude results in phase locking at �0 �
��=2, with u following along the branch 3. Without
damping, there is no mechanism for the plasma wave to
reach the equilibrium amplitude given by the upper
branch 3.
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FIG. 2. Excitation of a plasma wave by a Gaussian beat-wave
pulse (dotted line), a��� � a0 exp
��2=�2L�, �L � 150. Solid
line: ! � 0:95, above-threshold excitation with a0 � 0:023>
acrit � 0:02; dashed line: resonant excitation with ! � 1 and
a0 � 0:023; dot-dashed line: ! � 0:95, below-threshold exci-
tation with a0 � 0:018< acrit.
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FIG. 3 (color online). (a) Excitation of a plasma wave by a
pair of identical Gaussian beat-wave pulses (dot-dashed line)
separated by the delay times �d � 920 (solid line: wake de-
pleted by the second pulse) and �d � 980 (dashed line: wake
unperturbed by the second pulse). Pulse parameters: same as in
Fig. 2: a0 � 0:023, ! � 0:95, and �L � 150. (b) Sequence of
phase lockings and phase releases for �d � 920.
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Nevertheless, even without damping, a significant
plasma wave is left behind the finite-duration beat-wave
pulse (Fig. 2, solid line). This finite-amplitude solution is
reached due to the effect of the dynamic RB, which is best
understood through the conservation of the effective
Hamiltonian of the driven plasma wave. The effective
Hamiltonian

H �
�1�!2�u2

4!
�

3u4

64!
�

1

2
au sin� (4)

can be used to express Eqs. (2) and (3) in the form of _u �

��1=u�dH=d�, _� � �1=u�dH=du. For a < acrit, the
Hamiltonian adiabatically responds to a��� according
dH=d� � �0:5u sin�da=d�, thereby assuming a
parametrically-dependent on a value H�I1; a�. For the
initially quiescent plasma we find that H�I1; a � 0� � 0.
At a � acrit, the system becomes detrapped, its action
changes to I � I2, but the Hamiltonian does not:
H�I2; acrit� � H�I1; acrit�. Moreover, it can be shown that
@H�I1; acrit�=@acrit � @H�I2; acrit�=@acrit, and, therefore,
concluded that H�I1; a� � H�I2; a� for all a, including
a � 0. Although this argument is not entirely rigorous,
numerical simulations confirm that for a wide range of
amplitudes close to acrit and pulse durations 150< �L, the
Hamiltonian of the system is the same before and after
the beat-wave pulse: H�� � �1� � H�� � �1� � 0.
Note that the Hamiltonian does not stay constant inside
the pulse, but does return to its original value after the
pulse.

Remarkably, in addition to the trivial quiescent plasma

solution u � 0, there is a second u1 � 4
������������������������
�1�!2�=3

p
solution satisfying H�u1� � 0. Thus, a plasma wave
with H � 0 is dynamically bistable: after the passage
of the beat wave, it can be either quiescent, or have the
finite-amplitude u1. It is conjectured that, by using a
beat-wave pulse with a0 > acrit, the latter solution can
be accessed, thereby leaving a wake of a substantial
plasma wave with amplitude u1.

This conjecture is verified by numerically integrating
Eqs. (2) and (3) for two different detunings (resonant,
with ! � 1, and nonresonant, with ! � 0:95) and two
beat-wave amplitudes (subthreshold, with a0 � 0:018,
and above threshold, with a0 � 0:023). In all cases, the
Gaussian pulse duration was chosen �L � 150. In physical
units, for the plasma density of n0 � 1019 cm�3, the
corresponding pulse duration is tL � �L=!p � 750 fs.
Simulation results are shown in Fig. 2, where the solid
line corresponds to the most interesting of the three cases:
! � 0:95 and a0 � 0:023. The plasma wave amplitude of
u � 0:75 in the wake of the laser pulse is in a good
agreement with u1 � 0:72. This wake owes its existence
to the dynamic RB: upon interacting with the above-
threshold laser beat wave, plasma wave is transferred
from the quiescent state of u � 0 to the excited state of
u � u1. Extensive numerical simulations for a broad
range of pulse durations �L > 150 and amplitudes acrit <
195004-3
a0 < 1:3acrit confirmed that the finite-amplitude u1 wake
is indeed excited. The subthreshold excitation (dot-dashed
line) with the same detuning fails to transfer the plasma
into the excited state, yielding a negligible wake that is an
order of magnitude smaller than in the above-threshold
regime. Resonant excitation (dashed line) also yields a
much smaller wave. Moreover, the resonantly and the
subthreshold excited plasma waves would have been
even smaller had the adiabatic assumption been fully
satisfied. Indeed, it is numerically confirmed that the
wake amplitudes for the resonant and the subthreshold
excitations rapidly decline for longer pulses, whereas the
amplitude of the nonresonant above-threshold excitation
is insensitive to the beat-wave pulse length �L.

To demonstrate the bistable nature of the relativistic
plasma wake, excitation by a pair of identical beat-wave
pulses is considered. By varying the time delay �d �
!ptd between the pulses, plasma wave can be either
returned to the original quiescent state u � 0 [Fig. 3(a),
solid line, delay time �d � 920) or brought into the
excited state u � u1 [Fig. 3(a), dashed line, delay time
195004-3
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�d � 980). Depending on the time delay �d, there are,
essentially, only two outcomes for plasma wave ampli-
tude: u � 0 or u � u1. This result is remarkably non-
linear: the linear theory predicts that the wake behind
two pulses depends on their separation in a sinusoidal
way: u�t � 1� � 2u�t1�cos2
��d�!� 1��, where �L 

t1 
 �d is the instance well after the end of the first
and before the beginning of the second pulse. Therefore,
a complicated bi-Gaussian pulse shape is capable to trans-
fer the plasma wave into either one of the allowed under
the conservation of H solutions depending on the pulse
separation.

Dynamical RB described in this Letter is different
from the standard equilibrium bistablity of a weakly-
damped nonlinear oscillator [6,14] in that the former
does not require phase locking, only the constancy of
the effective Hamiltonian H before and after the pulse.
As Fig. 3(b) indicates, phase locking at �0 � �=2 exists
only during the switch-on half of the beat wave, �2�L <
� < 0. The plasma wave phase is released afterwards (0<
�< �d) as the pulse amplitude settles into u � u1 and
the system becomes detrapped. Depending on the delay
time, the second pulse can either (i) lock the phase at
�0 � �=2 and trap the system (as shown in Fig. 3(b)],
with the consequent decay of the plasma wave to u � 0,
or (ii) fail to lock the phase, resulting in u � u1 after the
pulse pair. Phase locking at �0 � ��=2 indicative of a
transfer to the equilibrium branch 3 and, therefore, equi-
librium bistability, is never observed.

So far the effect of the plasma wave on the driver has
been neglected. Of course, the energy of the plasma wave
is supplied by the beat wave. Since the plasma wave
energy changes nonmonotonically, different portions of
the beat wave either lose or gain energy. In the weakly
relativistic case, the plasma energy density Up �

n0mc
2u2=2. For concreteness, I concentrate on the

above-threshold case plotted in Fig. 2 (solid line). The
leading portion of the beat wave (�1< �< 64) contrib-
utes energy to the beat wave and is, therefore, depleted. If
the beat wave is produced by a laser pulse, this depletion
can be described in the language of photon deceleration,
or red-shifting [15]. In the context of the laser beat wave,
the red-shifting corresponds to the scattering of the pho-
tons from the higher frequency into the Stokes compo-
nent. Assuming equal amplitude lasers, E1 � E2, the rate
of the frequency shifting (per unit of the propagation
length) can be found as �d!=dz � �!3

p=4c!1a� �
d�u2�=d�. Therefore, the laser pulse is red (blue) shifted
if du=d� > 0 (du=d� < 0).

If the beat wave is produced by a microbunched elec-
tron beam, the sign of du=d� can be related to the accel-
eration or deceleration gradient of the drive electron
bunch Ez through
195004-4
Ez���
EWB

�
�nb
nb0

�
1

2a���
du2

d�

�
; (5)

where EWB � mc!p=e is the nonrelativistic wave break-
ing electric field. Again, the sign of du=d� determines
whether the driving bunch is accelerated or decelerated.
For a microbunched electron driver consisting of femto-
second bunches with duration �t 
 1=!p [7] produced
by an inverse free-electron laser, �nb � nb0. It is esti-
mated that in the plasma wave decay region of the driving
bunch (64< �< 112), the beam is decelerated at a rate of
Ez � 30 GeV=m for n0 � 1019 cm�3. Therefore, the mar-
riage of the microbunched plasma wakefield accelerator
and the dynamic relativistic bistability concepts yields a
new advanced acceleration technique that takes advan-
tage of the temporal drive beam structure to produce high
energy femtosecond electron beams.
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