
VOLUME 93, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S week ending
5 NOVEMBER 2004
Electron-Beam Conditioning by Thomson Scattering

C. B. Schroeder, E. Esarey, and W. P. Leemans
Center for Beam Physics, Ernest Orlando Lawrence Berkeley National Laboratory, University of California,

Berkeley, California 94720, USA
(Received 26 September 2003; revised manuscript received 25 November 2003; published 1 November 2004)
194801-1
A method is proposed for conditioning electron beams via Thomson scattering. The conditioning
provides a quadratic correlation between the electron energy deviation and the betatron amplitude of the
electrons, which results in enhanced gain in free-electron lasers. Quantum effects imply conditioning
must occur at high laser fluence and moderate electron energy. Conditioning of x-ray free-electron
lasers should be achievable with present laser technology, leading to significant size and cost reductions
of these large-scale facilities.
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A single-pass, high-gain free-electron laser (FEL)
operating in the self-amplified spontaneous emission
mode has received much recent attention as a next gen-
eration light source producing intense, coherent x rays
[1–4]. The performance of the FEL is limited by the
electron-beam quality, and typically the most demanding
requirement is the transverse beam emittance. Beam con-
ditioning [5–8] has been proposed as a method of miti-
gating this limitation by producing a correlation between
the energy and betatron amplitude of the electrons. In this
Letter, we propose a new conditioning mechanism based
on Thomson backscattering.

The FEL resonance condition is �1� vz=c��u � �,
where � is the radiation wavelength, �u is the undulator
wavelength, and vz is the electron axial velocity. The
spread in axial velocity owing to a spread in beam energy
and the betatron motion generates a deviation of the ra-
diation frequency from the resonant frequency !r�
2!u	

2
r=�1�a

2
u=2��2�c=�r, where !u�2�c=�u�cku,

	r is the Lorentz factor of the resonant electron-beam
energy, and au the normalized vector potential of the
undulator magnetic field. Assuming an energy deviation

	 � 	� 	r, and taking into consideration the trans-
verse motion of the electrons in the focusing fields, char-
acterized by the betatron wave number k�, the relative
frequency deviation is

!̂ � �!�!r�=!r � 2
	=	r � ��u=�r�k
2
�R

2=2; (1)

where R is the betatron amplitude (the maximum trans-
verse excursion of the electron orbit from the axis) in the
undulator.

The deviation from the resonant frequency Eq. (1) will
reduce the gain of the FEL and degrade the performance.
The exponential gain of the radiated power in a high-gain
FEL [1–3] can be expressed as PFEL / exp�Lu=Lg�, where
Lu is the undulator length, and the power gain length is
Lg � �2

���
3

p
�ku�

�1�1� �!̂=2��2=9	 assuming �!̂=2��2 <
1, where � is the FEL parameter [1]. The gain length
reduces to Lg � �2

���
3

p
�ku��1 for �!̂=2��2 
 1; i.e.,
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	=	r 
 � and ��u=�r��k
2
�R

2�=4 
 �. The latter condi-
tion can be expressed in terms of the beam emittance � �

k�R2 
 4��r=�k��u�. This emittance constraint can be
eliminated by conditioning the beam [5] such that the
energy deviation from resonance of each electron is pro-
portional to the square of its betatron amplitude, namely,


	=	r � ��u=�r�k2�R
2=4: (2)

A conditioned beam satisfying Eq. (2) has !̂ � 0 for
each electron (provided the uncorrelated relative energy
spread is much less than �), and the power gain length is
minimized. For example, consider parameters relevant
to the proposed Linac Coherent Light Source (LCLS) [4]
x-ray FEL: �r � 1:5 �A, k�1

� � 18 m, �u � 3 cm, 	r� �

1:2 mmmrad, and 	r � 2:8� 104. Then Eq. (2) implies a
conditioned energy deviation of 
	 / R2 with 
	�R �
rb� ’ 3, where rb is the beam radius. This nonlinear
energy deviation correlation should be achievable using
Thomson scattering with present laser technology, as
discussed below.

Several techniques for achieving the correlation Eq. (2)
have been proposed using conventional (radio frequency)
accelerating and focusing structures [5,6] or by vacuum
acceleration [7]. Recently it was shown [8] that any beam
conditioning using symplectic beam lines results in a
strong beam head-tail focusing variation, which produces
transverse emittance growth, severely limiting the bene-
fits of conditioning with these conventional methods.

In this Letter, Thomson backscattering (TB) [9] of an
intense laser pulse with the relativistic electron beam is
proposed as a method for FEL conditioning. The number
of TB photons (i.e., electron energy loss) is proportional
to intensity of the laser pulse, which decreases off axis for
a focused laser pulse. Therefore, TB of an intense focused
laser pulse produces a correlation between the energy loss
by an electron and its transverse location in the laser field,
thus allowing beam conditioning (a schematic of the
basic idea is shown in Fig. 1). Furthermore, the transverse
force of the laser pulse on the beam is axially uniform,
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FIG. 1. Schematic of beam conditioning via Thomson back-
scattering. Two Gaussian laser pulses provide the nonlinear
correlation between the energy deviation and the betatron
amplitude.
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thus minimizing emittance growth. Limitations imposed
by quantum fluctuations imply that conditioning must
occur at high laser fluence and modest beam energy. For
parameters of proposed x-ray FELs, TB conditioning
requires 
102 J in 
10 ps, which is achievable with
present laser technology, however, at low repetition rates
(&1 Hz).

TB was previously proposed as an incoherent x-ray
source [9,10] and as a cooling method for relativistic
beams [11–14]. The TB radiation frequency is [9]

!T � Nh4	
2
0!L=�1� a20=2� 	2

0�
2�; (3)

assuming 	2
0 � 	2

? and small scattering angle �2 
 1,
where 	2

? � �1� a20=2�,!L � ckL � 2�c=�L is the laser
frequency, 	0 is the Lorentz factor of the electron, a0 is
the normalized vector potential of the laser field, and
Nh is the harmonic number. In the low-intensity limit
a20 
 1, radiation is scattered only at the fundamental
Nh � 1. In the nonlinear limit a20 � 1, many harmonics
are produced, peaked near the critical harmonic number
Nh � 3a30=

���
8

p
for a circularly polarized laser.

For simplicity in the following analysis, a circularly
polarized Gaussian laser field is considered with a nor-
malized vector potential a � eA=mc2, in the Coulomb
gauge, given by a � �â0=

���
2

p
��cos�kL��êx � sin�kL��êy	,

where â0 � a0 exp��r2=r2L�, rL is the laser spot size
(kLrL � 1 is assumed), and � � z� ct (the laser pulse
travels in the �êz direction and the electron beam in the
�êz direction). Diffraction is neglected, which is valid
provided that the laser pulse length c#L and electron-
beam length $z are less than the Rayleigh length ZR �
�r2L=�L. The laser power and intensity are given by
PL�GW	 ’ 21:5�a0rL=�L�2 and IL�W=cm2	 ’ 1:37�
1018a20=��L�'m	�2, respectively.

The Lorentz equation, du=dt � @a=dt� �u=	� �
�cr� a�, can be solved for the motion of the electrons
in the laser field, where 	 � �1� u2�1=2 and u is the elec-
tron momentum normalized tomc. In the limit kLrL � 1,
there exist two constants of motion: d�u? � a?�=d� � 0
and d�	� uz�=d� � 0 (i.e., transverse canonical mo-
mentum conservation and energy conservation in the
wave frame). These equations can be integrated to yield
194801-2
the electron momenta u? � a? and uz � �	0 � u0�=2�
�1� â20=2�=�2�	0 � u0�	, and, prior to the interaction
with the laser, 	 � 	0 and uz � u0 are assumed.

The power radiated by a single electron can be calcu-
lated from the relativistic Larmor formula [15]

P � �2=3�e2c�	� uz�2��du=d��2 � �d	=d��2	: (4)

Using the electron orbits yields P ’ e2c�	� uz�
2k2Lâ

2
0=3.

The electron energy loss is mc2d	=dt � �P, or, assum-
ing 	� 1,

d	=dt � ��4=3�	2reck2Lâ
2
0; (5)

where re � e2=mc2. Equation (5) is valid provided the
transverse canonical momentum is approximately con-
served u? ’ a?. By including the radiation reaction
force, this holds provided 4kLre	2

?	=3 
 1, which is
typically well satisfied. Equation (5) has the solution 	 ’
	0�1� 2t=#R��1, where #R � �2rec	0k2Lâ

2
0=3�

�1 is the
radiation damping time and the beam-laser interaction
time is t � #L=2 for a relativistic electron beam. In prac-
tical units (assuming rb 
 rL), #R�ns	 ’ 45�2L�'m	=
�	0a20� ’ 6:2� 1019=�Eb�MeV	IL�W=cm2	�, where Eb is
the electron-beam energy. For example, #R ’ 6 ns for
Eb � 100 MeV and IL � 1017 W=cm2.

Since higher energy electrons radiate more strongly
than lower energy electrons, laser radiative cooling of
electron beams can occur [11–14]. The normalized energy
	, root-mean-square energy spread $	, and normalized
transverse emittance �n � 	� � �n0	=	0 of the beam
decrease via

	 � 	0�1� #L=#R��1; (6)

$	 ’ $	0�1� #L=#R�
�2; (7)

�n ’ �n0�1� #L=#R�
�1; (8)

where $	0 and �n0 are initial values. Laser cooling is
limited by quantum excitation from discrete photon scat-
tering [12–14].

For electrons within the spot size of the laser, r2 
 r2L,
the normalized intensity of the laser has a quadratic
dependence on radius; i.e., â20 ’ a

2
0�1� 2r2=r2L�. For r2 


r2L, the electron energy after TB, given by the solution to
Eq. (5), is

	 ’ 	0�1� 	0,Rc#L�
�1 �

�
2	2

0,Rc#L
1� 	0,Rc#L

�
r2

r2L
; (9)

where ,R � 2rek
2
La

2
0=3. In practical units, ,Rc#L ’

10�3UL�J	=r
2
L�'m	, where UL is the laser beam energy.

As Eq. (9) indicates, TB produces the desired quadratic
dependence of the energy on radius as required for beam
conditioning.

For a beam undergoing betatron oscillations (with beta
function �0) in a conventional beam lattice before enter-
ing the FEL undulator, the simplest TB conditioner would
require two laser pulses (with identical laser parameters).
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The first pulse would modify the energy of each electron
such that 	1’	0�	

2
0,Rc#L��2	2

0,Rc#L=r
2
L�r

2
1, assum-

ing 	0,Rc#L 
 1. The transverse position of an electron
in the lattice can be represented by r21 � �x0 cos. �
�0�dx=dz�0 sin.	2 � �y0 cos�. � ’� � �0�dy=dz�0 �
sin�. � ’�	2, where the subscript 0 denotes the ini-
tial value, . ’ z=�0, and ’ is a constant. The electron-
beam would then be allowed to obtain a �=2 phase
advance in the lattice, such that the transverse position
becomes r22 � �x0 cos�. � �=2� � �0�dx=dz�0 sin�.�
�=2�	2 � �y0 cos�. � ’ � �=2� � �0�dy=dz�0 sin�.�
’ � �=2�	2. At this point the beam would interact with
the second laser pulse, modifying the electron energy
such that 	2 ’ 	0 � 2	2

0,Rc#L � �2	2
0,Rc#L=r

2
L�R

2
0,

where R0 � �r21 � r22�
1=2 is the betatron amplitude at the

conditioner. If the electron beam is then accelerated to
the resonant energy for the FEL interaction 	r � �1�
a2u=2�1=2�!r=2!u�

1=2, the resulting energy deviation

	 � 	� 	r is 
	 ’ �2	2

0,Rc#L=r
2
L�R

2
0. The betatron

amplitude at the conditioner is related to the betatron
amplitude at the undulator by the invariant 	0R

2
0=�0 �

	rk�R2. This TB method can satisfy the beam condition-
ing criterion Eq. (2) provided

2	0�0,Rc#L=r2L � ��u=�r�k�=4: (10)

Multiple (M) applications of this TB method with 2M
laser pulses could be considered to reduce the laser energy
per pulse (UL=M).

The laser pulse also provides a transverse ponderomo-
tive force to the electrons F? � �mc2r?	 �
��mc2=	0	?�r?�â20=4�, which will result in a tran-
sverse electron momentum kick 
p? 
 F?#L 

�mc2=	0	?�a20#Lrb=r

2
L. This can be neglected provided


p? 
 p? � �	0mc�rb=�0. This condition implies
�0 
 	?	2

0r
2
L=�a

2
0c#L�, which can be easily satisfied by

using strong external focusing during conditioning.
The above results are based on a classical analysis that

neglects discrete photon scattering effects. This is valid if
the number of photons scattered per electron N	 is large;
i.e., N	 � 1, where N	 � �$	�mc2= %h!T� or

N	 � ��3=3��c#L=�L��a20=Fcr�; (11)

where $	 ’ �	2
0,Rc#L is the electron energy loss, !T �

4	2
0!LFcr is the on-axis (� � 0) TB photon frequency,

and 3 � e2= %hc ’ 1=137. Here, Fcr � 1 for a20 
 1, and
Fcr ’ 3a0=

���
8

p
for a20 � 1 [9]. Note thatN	 is independent

of the electron-beam parameters, and the condition N	 >
1 places a limit on the laser fluence since N	 / �LIL#L for
a20 
 1.

A limitation of TB as a method of beam conditioning
arises from the quantum-statistical nature of scattering.
The discrete scattering of a single photon generates an
energy spread %h!T=mc

2. After N	 photons, the total
change in the beam energy spread $	 is given by $$2

	 ’

N	� %h!T=mc
2�2 ’ �$	�4Fcr�C=�L�	

2, where �C �
194801-3
h=mc is the Compton wavelength. Using Eqs. (6) and
(7), the decrease in energy spread from radiative cooling
is given by $$2

	 ’ 4�$	�$2
	=	. Balancing this against

the increase in energy spread due to quantum fluctua-
tions yields the rate equation d$2

	=d	 � 4$2
	=	�

�4Fcr�C=�L�	
2 with the solution

$2
	 � $2

	0�	=	0�
4 � �4Fcr�C=�L�	3�1� 	=	0�: (12)

The FEL interaction requires that the electron energy
spread be within the FEL gain bandwidth, or $	=	r <
�. Using Eq. (12), this condition can be expressed as

4Fcr,Rc#L	4
0�C=�L < 	2

r�2; (13)

assuming $	0=	0 <� and #L=#R < 1. In practical units,
Eq. (13) is �UL�J	=�L�'m	�1=2	2

0=rL�'m	< 104	r�, as-
suming a20 
 1. Because of the strong dependence of this
inequality on 	0, conditioning must be done at modest
beam energy; i.e., typically 	0 
 	r for an x-ray FEL.
For example, if � � 5� 10�4, 	r � 2:8� 104, �L �
1 'm, rL � 50 'm, and UL � 100 J, the conditioning
beam energy must satisfy 	0 < 840.

Quantum fluctuations can also lead to normalized
transverse beam emittance growth [12–14]. The electron
receives a transverse recoil from the scattered photon. The
change in the electron divergence 
 from a single scat-
tering event is 
 ’ %h!T�=	mc2. After N	 collisions,
the angular spread is $h 2i ’ N	h�
 �

2i ’ ��$	=	2��

� %h!T=mc
2�h�2i. The average Thomson scattering angle is

h�2i ’ 	2
?=2	

2. The change in normalized emittance
from the transverse recoil is $�n � 	�0$h 2i=2. From
Eq. (8), the normalized transverse emittance decrease
from radiative cooling is $�n � �$	��n=	. Balancing
this against the increase due to the quantum fluctua-
tions yields the rate equation 	d�n=d	 � �n �
��0Fcr	2

?�C=�L� with the solution

�n � �n0�	=	0� � ��0Fcr	
2
?�C=�L��1� 	=	0�: (14)

To maintain good FEL performance, the emittance
growth from quantum excitation should be much less
than the initial emittance; i.e., �0��C=�L� �
Fcr	2

?	0,Rc#L 
 �n0. In practical units, this require-
ment is �n0�mmmrad	 � 2:4� 10�5�0�cm		0UL�J	=
��L�'m	r2L�'m	�, assuming a20 
 1. For example, if
�0 � 2 cm, 	0 � 102, �L � 1 'm, rL � 50 'm, and
UL � 100 J, then �n0 � 2� 10�4 mmmrad. For typical
parameters, the growth in the beam energy spread from
quantum excitation will be a more severe constraint than
the transverse emittance growth.

The fluctuation effects described above [cf. Eq. (13)]
imply conditioning must occur at moderate electron en-
ergy. For x-ray FELs, the low-energy electron bunch is
typically compressed and accelerated before entering the
undulator. Provided there is no particle mixing, bunch
compression does not change the radial energy correla-
tion. Table I lists two examples of TB conditioning for
194801-3



TABLE I. Parameters for TB conditioning of FELs at 1.5
and 0.4 Å. Electron-beam parameters are at the conditioner.

FEL parameters:
Resonant FEL wavelength, �r� �A	 1.5 0.4
Normalized resonant energy, 	r 2:8� 104 5:4� 104

FEL parameter, � 5:0� 10�4 2:6� 10�4

Undulator wavelength, �u�cm	 3 3
Betatron wavelength, k�1

� �m	 18 18
Laser parameters:

Laser wavelength, �L�'m	 1.06 0.8
Laser pulse duration, #L�ps	 18.5 14
Normalized intensity, a0 0.5 0.5
Laser spot size, rL�'m	 54 38
Laser power (Gaussian), PL�TW	 14 12
Laser power (tailored), Pt�TW	 1.0 2.4
Laser energy (Gaussian), UL�J	 263 166
Laser energy (tailored), Ut�J	 18 33
Rayleigh length, ZR�cm	 0.88 0.56

Electron-beam parameters:
Normalized beam energy, 	0 490 427
Normalized emittance, �n�'m rad	 1.2 1.2
Beam radius, rb�'m	 15 20
Beam length, $z�mm	 0.19 0.83
Beam charge, [nC] 1 1
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x-ray FELs. The first example considers a 1:06 'm glass
laser system for conditioning a 1.5 Å FEL (near LCLS
parameters [4]), and the second example considers a
0:8 'm Ti:Al2O3 laser system for conditioning a 0.4 Å
FEL (near the parameters for the proposed ‘‘Greenfield’’
FEL [16]). The beam conditioning requirement Eq. (10) is
satisfied, as well as N	 * 10 and the energy spread con-
dition $	=	r < � at the undulator. The laser parameters
listed in Table I are achievable with present systems,
albeit at low repetition rate (&1 Hz).

The above analysis and examples have assumed a
Gaussian transverse laser profile with r2L � r2b; i.e.,
much of the laser energy (for r > rb) is not used in the
TB process. In principle, the transverse laser profile can
be tailored such that the intensity satisfies the quadratic
dependence It / �1� 2r2=r2L� for r � rb, and It ’ 0 for
r > rb [with laser power Pt�GW	 ’ 21:5�a0rb=�L�

2�1�
r2b=r

2
L�], thereby reducing the required laser power and

energy for TB conditioning. The effective diffraction
length for such a tailored pulse containing higher-order
transverse modes will be shorter than for a Gaussian
mode, and, therefore, some form of laser guiding might
be required to extend the interaction length.

In conclusion, we have proposed and analyzed FEL
beam conditioning by TB using high-power lasers. TB
can provide a quadratic correlation between the energy
deviation and the amplitude of the electrons, and an
expression [Eq. (10)] for perfect conditioning via TB
was derived. The quantum nature of TB places limits on
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the applicability of this method. Requiring the number of
photons scattered per electron to be large implies large
laser fluences. Requiring the energy spread induced by
quantum fluctuations to be small implies modest electron
energies; i.e., typically TB conditioning must be done
before accelerating the beam to the full FEL resonant
energy for short-wavelength FELs. Examples relevant to
proposed x-ray FELs indicate that TB conditioning is
achievable with present-day technology. The repetition
rate of such laser systems is currently limited, but newly
emerging diode-pumped, short-pulse laser technology is
a promising path to higher average power. By using TB to
condition beams in large-scale x-ray FELs, in which
beam emittance is a limiting factor, the FEL gain can
be enhanced, thereby decreasing the overall length and
cost of the FEL.
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