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We propose an integrable model of a multicomponent spinor Bose-Einstein condensate in one
dimension, which allows an exact description of the dynamics of bright solitons with spin degrees
of freedom. We consider specifically an atomic condensate in the F � 1 hyperfine state confined by an
optical dipole trap. When the mean-field interaction is attractive (c0 < 0) and the spin-exchange
interaction of a spinor condensate is ferromagnetic (c2 < 0), we prove that the system possesses a
completely integrable point leading to the existence of multiple bright solitons. By applying results
from the inverse scattering method, we analyze a collision law for two-soliton solutions and find that
the dynamics can be explained in terms of the spin precession.

DOI: 10.1103/PhysRevLett.93.194102 PACS numbers: 05.45.Yv, 03.75.Mn, 04.20.Jb
In 2002, two groups [1,2] reported matter-wave soli-
tons of an atomic Bose-Einstein condensate (BEC). They
prepared BECs of 7Li atoms in a small region of an
elongated optical dipole trap, which is an analog of a
waveguide for microwaves. After tuning the strength of
interaction between the atoms to a sufficiently large nega-
tive value, they set the condensate free along the wave-
guide. The solitary wave packets were formed and
propagated in the guide nondispersively. It is well known
that the Gross-Pitaevskii (GP) equation with attractive
interactions in a one-dimensional (1D) space, which is
also called the self-focusing nonlinear Schrödinger
(NLS) equation, has bright soliton solutions [3].
Therefore, they concluded that the dynamics of the sys-
tem is actually 1D so that the matter-wave solitons can be
observed.

Matter-wave solitons in a new field of atom optics [4]
are expected to be useful for applications in atom laser,
atom interferometry, and coherent atom transport.
Moreover, it could contribute to the realization of quan-
tum information processing or computation. When one
explores these future applications, atomic BECs have
another advantage. That is, atoms have many internal
degrees of freedom liberated under an optical trap [5],
giving rise to a multiplicity of signals. The properties of
BECs with spin degrees of freedom were investigated by
many researchers [5–8].

In this Letter, we combine these two fascinating prop-
erties, matter-wave soliton and internal degrees of free-
dom. We consider BECs of alkali atoms in the F � 1
hyperfine state, such as 7Li, 87Rb, and 23Na, confined in
the 1D space by purely optical means. Under no external
magnetic fields, their three internal states mF � 1; 0;�1,
where mF is the magnetic quantum number, are degener-
ate. The dynamics of the spinor condensates is described
by the multicomponent GP equations within the mean-
field approximation. Those coupled equations have non-
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trivial nonlinear terms reflecting the SU(2) symmetry of
the spins.

When the mean-field interaction is attractive and the
spin-exchange interaction is ferromagnetic, we show that
this system possesses a completely integrable point. By
considering a reduction of results from the inverse scat-
tering method, we present for the first time the exact
multiple bright soliton solutions for the system with the
spin-exchange interaction. The spin-exchange interac-
tion, which is absent in the systems of Refs. [1,2] because
of frozen spin degrees of freedom under additional mag-
netic fields, gives rise to spin mixing within condensates
[8] during soliton-soliton collisions. We analyze the col-
lision law for two-soliton solutions and find that the
soliton dynamics can be explained in terms of the spin
precession.

The assembly of atoms in the F � 1 state is character-
ized by a vectorial order parameter: ��x; t� �
�1�x; t�;0�x; t�;�1�x; t��

T with the components sub-
ject to the hyperfine spin space. The normalization is
imposed as

R
dx��x; t�y 	��x; t� � NT , where NT is the

total number of atoms. Here we assume that the system is
one dimensional: the trap is elongated in the x direction
such that the transverse spatial degrees of freedom are
factorized from the longitudinal and all the hyperfine
states are in the transverse ground state. This quasi-one-
dimensional regime is achievable [9]. The interaction
between atoms in the F � 1 hyperfine state is given by
V�x1 � x2� � ��x1 � x2�� �c0 
 �c2F1 	 F2� , where Fj are
the angular momentum of two atoms [6]. In this expres-
sion, �c0 � � �g0 
 2 �g2�=3, �c2 � � �g2 � �g0�=3, with the ef-
fective 1D couplings [10],

�g f �
4 �h2af
ma2?

1

�1� Caf=a?�
; (1)

where af are the s-wave scattering lengths in the total
hyperfine spin f channel, a? is the size of the transverse
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ground states, m is the atomic mass, and C � ���1=2� �
1:4603 	 	 	 . Then, the Gross-Pitaevskii energy functional
is expressed as

EGP �
Z
dx
�
�h2

2m
@x

�
�@x� 


�c0
2
�
�

�
�0�0�



�c2
2
�
�

�
�0fT�� 	 fT�0�0�0�

�
; (2)

where repeated subscripts f�;�; �0; �0 � 1; 0;�1g should
be summed up and f � �fx; fy; fz�T with fi being 3� 3
spin-1 matrices.

The time evolution of the spinor condensate wave
function ��x; t� can be derived from the variational prin-
ciple: i �h@t��x; t� � �EGP=�

�
��x; t�. Substituting

Eq. (2) into this, we obtain a set of equations:

i�h@t�1 ��
�h2

2m
@2x�1 
� �c0 
 �c2��j�1j

2 
j0j
2��1


� �c0 � �c2�j�1j
2�1 
 �c2

�
�1

2
0;

i�h@t0 ��
�h2

2m
@2x0 
 �c0j0j

20


� �c0 
 �c2��j1j
2 
j�1j

2�0


 2�c2�
01�1: (3)

In this Letter, we consider the system with the coupling
constants �c0 � �c2 � �c < 0, equivalently 2 �g0 � � �g2 >
0. The effective interactions between atoms in a BEC
have been tuned with a Feshbach resonance [11]. In spinor
BECs, however, we should extend this to alternative tech-
niques such as an optically induced Feshbach resonance
[12] or a confinement induced resonance [10], which do
not affect the rotational symmetry of the internal spin
states. In the latter, the above condition is surely obtained
by setting a? � 3Ca0a2=�2a0 
 a2� in Eq. (1) when a0 >
a2 > 0 or a2 > 0> a0. Recently, such strong transversal
confinement has been realized in a 2D optical lattice
where a? � tens of nm [13].

Introducing the dimensionless form, � !

��1;
���
2

p
�0; ��1�

T , where time and length are measured
in units of �t � �ha?=c and �x � �h

������������������
a?=2mc

p
, respectively,

we can rewrite Eqs. (3) as a 2� 2 matrix version of the
NLS equation:

i@tQ
 @2xQ
 2QQyQ � O; Q �
�1 �0

�0 ��1

� �
:

(4)

Since the matrix NLS eqution (4) is integrable [14], the
dynamical problems of this system can be solved exactly.
The embedding (4) and its first application to an atomic
system with the spin-exchange interaction are the main
idea of this Letter.

We remark that a different choice of Q gives rise to
coupled NLS equations known as the Manakov model
[15] which is widely used to describe the interaction
among the modes in nonlinear optics.
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The general N-soliton solution of Eq. (4) is obtained
through a reduction of a formula derived by the inverse
scattering method (ISM) in [14] as

Q�x; t� � �I 	 	 	 I|��{z��}
N

�S�1

�1e
%1

..

.

�Ne
%N

0BB@
1CCA; (5)

where I is the 2� 2 unit matrix and the 2N � 2N matrix
S is given by

Sij � �ijI 

XN
l�1

�i 	�
y
l

�ki 
 k�l ��kj 
 k
�
l �
e%i
%

�
l

(1 � i; j � N). Here we have introduced the following:

�j �
�j �j
�j (j

� �
; 2j�jj2 
 j�jj2 
 j(jj2 � 1;

%j � %j�x; t� � kjx
 ik
2
j t� )j:

The 2� 2 matrices �j normalized to unity in the sense of
the square norm must take the same form as Q from their
definition. We call them ‘‘polarization matrices,’’ which
determine both the populations of the three components
f1; 0;�1g within each soliton and the relative phases
between them. The complex constant kj denotes a discrete
eigenvalue of the jth soliton, which determines a bound
state by the potential Q in the context of ISM [14]. )j is a
real constant which can be used to tune the initial dis-
placement of a soliton.

The equation (4) is a completely integrable system
in the sense that the initial value problems can be solved
via ISM. The existence of the r matrix for this system
guarantees the existence of an infinite number of conser-
vation laws [14] which restrict the dynamics of the sys-
tem in an essential way. Here we show explicit forms of
some conserved quantities: number, NT �

R
dxn�x; t�,

n�x; t� � �y 	� � trfQyQg; spin, FT �
R
dxf�x; t�,

f�x; t� � �y 	 f 	� � trfQy�Qg, (�: Pauli matrices);
momentum, PT �

R
dxp�x; t�, p�x; t� � �i �h�y 	 @x� �

�i �htrfQyQxg; energy, ET �
R
dxe�x; t�, e�x;t��

��h2=2m�@x�y	@x��c�n2
f2�=2�ctrfQy
xQx�Q

yQQyQg.
If we set N � 1 in the formula (5), we obtain the one-

soliton solution:

Q � 2kR
�e��%R
.=2� 
 �/y�y/y�e%R
.=2 det�

e��2%R
.� 
 1
 e2%R
.j det�j2
ei%I ;

(6)

where e.=2 � �2kR�
�1 and the subscripts R and I denote

real and imaginary parts, respectively. We set kR > 0
without loss of generality.

In Eq. (6), we can make out the significance of each
parameter or coordinate as follows: kR, amplitude of
soliton; 2kI, velocity of soliton’s envelope; %R, coordinate
for observing soliton’s envelope; %I, coordinate for ob-
serving soliton’s carrier waves. We use the term ‘‘ampli-
tude’’ in the sense of the peak(s) height of the soliton’s
194102-2



FIG. 1. Time evolution of j�0j
2 (left column), j�1j

2 (middle
column), j��1j

2 (right column) for (a) kI � 0:75, (b) 0.25, and
(c) 0.05, with kR � 0:5, �1;2 � 4=17, �1 � (2 � 16=17, and
(1 � �2 � 1=17.
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envelope. The actual amplitude should be represented as
kR multiplied by a factor from 1 to

���
2

p
which is deter-

mined by the type of polarization matrices. Note that the
motion of the soliton depends on both x and t via variables
%R and %I, which elucidates the meaning of 2kI as a
velocity.

Because of the spin conservation, the one-soliton solu-
tion can be classified by the spin states. We show that only
two spin states are allowable, i.e., jFT j � NT for det� �
0 and jFT j � 0 for det� � 0.

Ferromagnetic state.—Under the condition det� � 0
(�2 � �(), Eq. (6) becomes a simple form:

Q � kRsech�%R 
 .=2��ei%I :

Now all of the mF � 0;�1 components share the same
wave function. Their distribution in the internal states
reflects the elements of the polarization matrix � di-
rectly. One can clearly see the meaning of each parameter
listed above. The number of particles is calculated as
NT � 2kR. The spin of this soliton becomes

F T � 2kRtrf�
y/�g; jFTj � NT: (7)

Thus, this type of soliton belongs to the ferromagnetic
state. The momentum and the energy of the ferromagnetic
state are PfT � NT �hkI, E

f
T � NTc�k2I � k

2
R=3�.

Polar state.—In the case of det� � 0, a local spin
density has one node, i.e., f�x0; t� � 0 at a point x0 �
2kIt
 �ln�4k2R=j det�j� 
 2)�=2kR, for each moment of
t. Setting x0 � x� x0 and A�1 � 2j det�j, we obtain

f�x0� � �
4k2RAsinh�2kRx

0�

�A
 cosh�2kRx0��2
trf�y��g:

Since each component of the local spin density is an odd
function of x0, its average value becomes zero, i.e., FT �
�0; 0; 0�T . This implies that this type of soliton, on the
average, belongs to the polar state [6]. Note that the
relation NT � 4kR is different from that of the ferromag-
netic state. The momentum and the energy are given by
PpT � NT �hkI, E

p
T � NTc�k

2
I � k

2
R=3�, respectively. The en-

ergy difference between the ferromagnetic state and the
polar state with the same number of particles NT is EfT �
EpT � �N3

Tc=16< 0, which is a natural consequence of
the ferromagnetic interaction, i.e., �c2 < 0.

The two-soliton solution can be obtained by setting
N � 2 in Eq. (5). Since the derivation is straightforward
but lengthy, we give an explicit formula of the general
two-soliton solution in a separate paper [16], and here we
focus on the two-soliton solution in the energetically
favorable ferromagnetic state ( det�1 � det�2 � 0),
computing the asymptotic forms as t! �1, which de-
fine a collision law of two solitons in the spinor model.
For simplicity, we confine the spectral parameters to
regions k1R > 0, k2R < 0, k1I < 0, and k2I > 0, which
correspond to a head-on collision. Under these condi-
tions, we calculate the asymptotic forms in the final state
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(t! 1) from those in the initial state (t! �1). In the
asymptotic forms, we can consider each soliton sepa-
rately. Thus, the initial state is given by a sum of two
solitons as Q ’ Qin

1 
Qin
2 , where Qin

j � kjRsech�%jR 

.j=2��je

i%jI . And for the final state, Q ’ Qfin
1 
Qfin

2 ,
where Qfin

j � kjRsech�%jR 
 .j=2
 s� ~�je
i%jI . Here we

have introduced the phase shift s � ln�1�
�4k1Rk2R=jk1 
 k�2j

2�jtr��1�
y
2 �j� and the polarization

matrices ~�j in the final state. Each polarization matrix
�j of the ferromagnetic state can be expressed by three
real variables 1j; 2j; ’j [6], as

�j � ei1j
cos2

2j
2 e

�i’j cos
2j
2 sin

2j
2

cos
2j
2 sin

2j
2 sin2

2j
2 e

i’j

 !
:

In this expression, we have the following collision law:

�j � ei1juj 	 uTj ; ~�j � e�s
i1j ~uj 	 ~uTj ;

where with �j; l� � �1; 2�; �2; 1�,

uj �
cos

2j
2 e

�i
’j
2

sin
2j
2 e

i
’j
2

 !
; ~uj � uj �

kl 
 k
�
l

kj 
 k
�
l

�uy
l 	 uj�ul:

Since each envelope is located around x ’ 2kjIt, soli-
ton 1 and soliton 2 are initially isolated at x! �1 and
then travel to the opposite direction at a velocity of 2k1I
and 2k2I, respectively. After a head-on collision, they
pass through without changing their amplitudes and ve-
locities and arrive at x! �1 in the final state. The
collision induces rotations of their polarizations in addi-
tion to the usual phase shifts. The collision laws for other
cases, two-soliton of polar-ferromagnetic ( det�1 �
194102-3
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FIG. 2. ! versus kI=kR for F � 1 (solid line), 0.5 (dashed
line), 0.0157 (dash-dotted line), and 0 (dotted line).
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0; det�2 � 0) and polar-polar ( det�1 � 0; det�2 � 0),
can be obtained in the same way [16].

Figure 1 shows the time evolution of the density pro-
files for f1; 0;�1g components in three different veloc-
ities: (a) �k1I � k2I � kI � 0:75, (b) kI � 0:25, and
(c) kI � 0:05, with k1R � �k2R � kR � 0:5, �1;2 �
4=17, �1 � (2 � 16=17, and (1 � �2 � 1=17. In the
initial state, soliton 1 (left mover) consists mostly of the
mF � 1 component and, on the contrary, soliton 2 (right
mover) almost lies in mF � �1. A fast collision,
Fig. 1(a), makes the solitons almost transparent to each
other. As kI decreases, the residence time inside the colli-
sional region increases, and the mixing among the com-
ponents occurs in each outgoing soliton. In Fig. 1(c), the
components are switched between the solitons after their
collision. As seen in Fig. 1(b) clearly, the number of each
component can vary not only in each soliton but also in
the total during the collision in consequence of the spin-
exchange interaction. This contrasts to the Manakov sys-
tem [15], where the total number of each component is
conserved.

We can gain a better understanding of the two-soliton
collision by recasting it in terms of the spin dynamics.
The total spin conservation restricts the motion of the
spin of each soliton on a circumference around the total
spin axis. Since a spin of the ferromagnetic soliton is
given by Eq. (7), that of the jth soliton in the initial state
is Fj � 2jkjRj�sin2j cos’j; sin2j sin’j; cos2j�

T . When we
set jk1Rj � jk2Rj � NT=4, the final state spins ~Fj are
obtained through F1;2 by ~Fj � cos2�!=2�Fj 

sin2�!=2�Fl 
 sin!�Fj � Fl�=jFT j, where FT � F1 
 F2,
and ! is a rotation angle of the spin precession. The
rotation angle ! is determined only by the ratio kI=kR
and the magnitude of the normalized total spin F �

jFT=NTj as cos�!=2� � e�s=2 with es � 1
 �kR=kI�
2F 2.

Figure 2 shows ! as a function of the ratio kI=kR for
different values of the normalized total spin: F � 1, 0.5,
0.0157, and 0. In consistency with Fig. 1, it exhibits that!
becomes larger as kI=kR decreases. The large (small) total
spin makes the spin of each soliton rotate a lot (bit).When
FT is zero, corresponding to the case of antiparallel spin
194102-4
collision, the spin precession cannot occur as shown by
the dotted line in Fig. 2.

In this Letter, we have introduced the integrable model
which describes the dynamics of F � 1 spinor BECs in
one dimension. Utilizing the inverse scattering method,
we have obtained the multiple soliton solutions. One-
soliton solutions are classified into two distinct spin
states: ferromagnetic, jFT j � NT , and polar, jFTj � 0.
We have also shown the collision law for the two solitons
of the ferromagnetic state and identified their collision
with the spin precession dynamics around the total spin.
We believe these properties should be observed in experi-
ment and lead to a variety of applications such as coherent
atom transport and quantum information.
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Soljačić et al., Phys. Rev. Lett. 90, 254102 (2003); T.
Tsuchida, Prog. Theor. Phys. 111, 151 ( 2004).

[16] J. Ieda, T. Miyakawa, and M.Wadati, J. Phys. Soc. Jpn. 73,
2996 (2004).
194102-4


