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Engineering Mixed States in a Degenerate Four-State System
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A method is proposed for preparing any pure and wide class of mixed quantum states in the
decoherence-free ground-state subspace of a degenerate multilevel lambda system. The scheme is a
combination of optical pumping and a series of coherent excitation processes, and for a given pulse
sequence the same final state is obtained regardless of the initial state of the system. The method is
robust with respect to the fluctuation of the pulse areas, as in adiabatic methods; however, the field
amplitude can be adjusted in a larger range.
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FIG. 1 (color online). The coupling scheme for our state-
engineering procedure: the lower states are the magnetic sub-
levels of a J � 1 angular momentum state which are coupled
by �� and � polarized pulses to a single excited state. The
excited state decays with a rate �in into the lower states, and it
may decay out of the system with a rate �ext. For nonzero �ext a
repumping is switched on with a rate Rp.
Controlling the quantum state of degenerate quantum
systems has drawn a lot of attention recently. This field
has developed independently in several different series of
studies: Among the numerous adiabatic passage tech-
niques [1] one of the most well-known methods is the
stimulated Raman adiabatic passage (STIRAP) [2]. The
STIRAP can be used not only for transferring population
between two quantum states using crafted laser pulses,
but it has also been utilized to create coherent super-
positions in three- and four-level systems [3–5], to pre-
pare maximally coherent superposition states [6] and
arbitrary coherent superpositions [7–9] in N-state degen-
erate systems. The applicability of the STIRAP method is
limited by constraints on the field amplitudes [2,10].

The other field that developed toward the quantum
control of degenerate systems is termed ‘‘coherent con-
trol’’ that uses several interfering pathways in the quan-
tum system to transfer selectively population from an ini-
tial state to a target one [11]. Merging this technique with
the STIRAP method led to the mapping of wave packets
between vibrational potential surfaces in molecules for
the nondegenerate [12] and degenerate [13,14] cases.

The above mentioned control processes have great im-
portance in many areas of quantum-information process-
ing (QIP), involving quantum computing, cryptography,
and teleportation [15]. In general, mixed states cannot be
created with coherent state-preparation methods.
However, for several QIP problems it is essential to de-
velop quantum-state-preparation techniques which are
capable of preparing not only pure but also mixed states
of the system [16–18].

In optical pumping processes [19], the final state of the
system is largely independent of its initial state; however,
the efficiency is small [20]. On the other hand, in the
coherent state-preparation methods the final state de-
pends on the initial state of the system, but the efficiency
can be nearly unity [1,2]. In this Letter we consider a
novel concept for quantum-state preparation, which is a
combination of optical pumping and coherent excitation
processes, exhibiting only the advantageous properties of
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the two schemes and capable of preparing not only pure
but also prescribed mixed states of the system. The unique
features of our method compared to other state-
preparation methods are the following: simultaneously
(i) it is robust, (ii) the final state is independent of the
initial state of the system, (iii) the state is prepared in a
decoherence-free subspace, and (iv) the choice of the
excitation field amplitude is quite arbitrary. The method
can be implemented in multilevel lambda systems. For
concreteness, let us consider the four-state system shown
in Fig. 1: there are three degenerate ground states and a
single excited state coupled by an elliptically polarized
coherent laser pulse. The ground states jgqi (q � �; �;�)
are assumed to be the magnetic sublevels of a Jg � 1
angular momentum state, whereas the excited state jei
has Je � 0. The three polarization components of the
coupling field, denoted by Eq with �q � �; �;��, share
the same time dependence, but they can have different
peak amplitudes and phases,

E��t� � E�t�ei
ei�� sin� sin’; (1a)

E��t� � E�t�ei
 cos�; (1b)

E��t� � E�t�ei
ei�� sin� cos’; (1c)

where the parameters �,’ describe the polarization of the
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pulses, 
 is the absolute phase of the pulse, and the phases
of the �� and �� components relative to the � compo-
nent are �� and ��, respectively. The excited state jei
decays with spontaneous emission to the ground states
with a rate of �in, and it may decay to states other than the
three ground states with a rate of �ext as well.When decay
out of the ground-state space occurs, a repumping process
with a rate of Rp is switched on in order to compensate
for the population loss. We show that by using a prede-
termined sequence of pulses we can create any prescribed
pure or wide class of mixed final states in the ground-
state space, starting from any initial state.

The master equation describing the time evolution of
the system is given by

d
dt
%̂ �

1

i �h
	Ĥ; %̂
 �

�in

2

X
l��;�;�

2L̂l%̂L̂
y
l � L̂y

l L̂l%̂� %̂L̂y
l L̂l

�
�ext

2
L̂e%̂�

�ext

2
%̂L̂e � Rp�1� Trf%̂g�L̂e; (2)

where the Hamiltonian Ĥ reads

Ĥ �
�h
2
���jg�ihej ���jg�ihej ���jg�ihej � H:c:�

� �h�jeihej; (3)

where the Rabi frequencies are �� �
1
3�e

i
ei�� sin� sin’, �� � � 1
3�e

i
 cos�, and �� �
1
3�e

i
ei�� sin� cos’, with �h� � dgeE. The step opera-
tors are defined as L̂q �

1��
3

p jgqihej and L̂e � jeihej. The

other symbols are defined above.
The Hamiltonian of Eq. (3) has two uncoupled eigen-

states j��l�
D i [21]; i.e., they are decoupled from the exter-

nal driving field, Ĥj��l�
D i � 0 for l � 1; 2. They read

j��l�
D i �

X
q��;�;�

n�l�q jgqi; l � 1; 2; (4)

where the unit vectors n�l� are given by n�1� �

	ei�� cos� sin’; sin�; ei�� cos� cos’
T and n�2� �
	�e�i�� cos’; 0; e�i�� sin’
T , and the field parameters
��, ’, � are defined in Eq. (1). These states are dark
states, because they do not have a component in the
excited state [22]. The Hamiltonian has two other
eigenstates with nonzero eigenvalues; they are called
bright states, because they have a component in the ex-
cited state [22].

Let us assume that we have some initial state %̂in

defined in the decoherence-free, ground-state space. The
Hamiltonian part of the master Eq. (2) drives the bright
components of this state to the excited state back and
forth via Rabi oscillations. As the excited state becomes
populated, the spontaneous emission interrupts the
Hamiltonian dynamics and the system falls back into
the ground-state space or some other external states be-
come populated. As a result, the two dark states become
more and more populated, even though they are de-
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coupled from the external driving field. When there is
no decay into external states or the decay out of the four-
state system is compensated by an incoherent repumping
process, the system relaxes into the dark subspace of the
Hamiltonian. Then, the state of the system is given by

%̂ out � p�1�j��1�
D ih��1�

D j � p�2�j��2�
D ih��2�

D j; (5)

where the coefficients p�l� depend on the applied pulse and
the initial state as well. It is important to note that this
output state is independent of the pulse amplitude E, it
depends only on the polarization and relative phases of
the three components of the field of Eq. (1).

In the ground-state space the state j��?�i orthogonal to
the dark states of Eq. (4) is j��?�i � ei�� sin� sin’jg�i �
cos�jg�i � ei�� sin� cos’jg�i. This vector can point to
anywhere in the three-dimensional ground-state space,
depending on the laser-field parameters. Consequently, it
is possible to choose the laser-field parameters, so that
any two linearly independent state vectors j 1i and j 2i
of the three-dimensional ground-state space lay in the
dark subspace. Therefore, in principle there exists a pulse
sequence, such that any prescribed final state of the form

%̂ f � p�1�
f j 1ih 1j � p�2�

f j 2ih 2j (6)

can be obtained. The state %̂f can be either a pure state if
one of the coefficients p�l�

f vanishes or a mixed state if
both of them are nonzero.

We have two tasks now: (i) to find how an initial state
%̂in transforms when the pulses Eq. (1) are adjusted to a
certain value; (ii) to find the pulse sequence that steer the
state of the system to a prescribed final state defined by
Eq. (6).

For convenience, the linear space of the density op-
erators f%̂g is represented by vectors frg with compo-
nents r4�i�1��j � �%̂�i;j, where �%̂�i;j is the matrix ele-
ment of the density operator %̂ in the ordered basis
fjg�i; jg�i; jg�i; jeig. The scalar product of vectors is
defined as �r�1�jr�2�� �

P
sr

�1��
s r�2�s � Trf%̂�1�%̂�2�g. The

master Eq. (2) in this representation takes the form d
dt r �

Mr� d, where the matrix M describes the linear part of
the master Eq. (2), and d corresponds to the constant term
RpL̂e in the incoherent repumping of the excited state. In
this Letter we consider the following two cases.

(a) The case �ext � Rp � 0.—In this case the master
equation is homogeneous in r, and d is zero. The relaxa-
tion of the system into its final state can be described by
those left- and right-hand eigenvectors (denoted by r�k�L

and r�k�R , respectively) of the matrix M, which belong to
the eigenvalue zero

Mr�k�R � 0; r�k�TL M � 0; (7)

and are orthonormal �r�k�L jr�k�R � � "kl. The left- and right-
hand zero subspaces of M are four dimensional, and they
are different. The density matrices corresponding to the
193003-2
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right-hand eigenstates r�k�R are composed from the dark
eigenstates j��l�

D i of the Hamiltonian (3), as

%̂�1�
R �

1���
2

p �j��1�
D ih��1�

D j � j��2�
D ih��2�

D j�; (8a)

%̂�2�
R �

1���
2

p �j��1�
D ih��2�

D j � j��2�
D ih��1�

D j�; (8b)

%̂�3�
R �

i���
2

p �j��2�
D ih��1�

D j � j��1�
D ih��2�

D j�; (8c)

%̂�4�
R �

1���
2

p �j��1�
D ih��1�

D j � j��2�
D ih��2�

D j�: (8d)

As for the density matrix representation of the left-hand
eigenstates r�k�L , the first three %̂�k�

L are given by Eqs. (8a)–
(8c), and the fourth one is %̂�4�

L � 1��
2

p Î. The final state of

the system, after the relaxation has finished, is given by
rout �

P4
k�1�r

�k�
L jrin�r

�k�
R since in this state d

dt rout � 0. By
using the density operator representation Eq. (8) of the
eigenvectors r�k�L=R of M, the input-output transformation
can be written in a simple form as %̂out � T a�%̂in�, where
T a�%̂� reads

T a�%̂� � %̂0 � 1
2�1� Trf%̂0g�P̂D; %̂0 � P̂D%̂P̂D; (9)

where P̂D is a projector into the dark subspace of the
Hamiltonian (3), P̂D �

P2
k�1 j�

�k�
D ih��k�

D j.
(b) The case Rp; �ext > 0.—Now the excited state is

repumped from all external decay channels incoherently
with a rate of Rp. The linear differential equation that
governs the time evolution of the density operator takes
the form d

dt �r� ~r� � M0�r� ~r�, where the constant vec-
tor ~r satisfies M0~r � �d, and the density matrix corre-
sponding to ~r is

~̂% � sin2’jg�ihg�j � cos2’jg�ihg�j

� 1
2�e

i������� sin2’jg�ihg�j � H:c:�: (10)

The left- and right-hand zero subspaces of the matrix M0

coincide and are three dimensional. The eigenvectors r�i�,
(i � 1; 2; 3) satisfy the equation M0�r�i� � ~r� � 0, and the
corresponding density matrices are given by Eqs. (8a)–
(8c). Instead of the mapping in case (a), the input-output
states are connected through the relation rout �

~r�
P3
i�1�r

�i�jrin � ~r�r�i�; which in the density matrix
representation reads %̂out � T b�%̂in�, where T b�%̂� is de-
fined as

T b�%̂� � ~̂%� ~̂%0
� %̂0 � 1

2�1� Trf%̂0g�P̂D; (11)

where the prime denotes projection into the dark subspace
as in Eq. (9).

Now we turn our attention to finding a pulse sequence
that yields a desired final density operator of the form
Eq. (6). The transformation of an initial density operator
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is described by the subsequent applications of the map-
pings of Eqs. (9) and (11)

�̂% f � T �N��T �N�1�� . . .T �1��%i� . . . ��; (12)

where T �%̂� is equal to T a�%̂� or T b�%̂�. We have to
choose the number of steps N to find the relative pulse
amplitudes and phases, defined in Eq. (1), by means of
minimizing numerically the functional

J �fEg; %̂in; %̂f� � �1� Trf �̂%f%̂fg�
1=2; (13)

which is the mismatch between the obtained �̂%f [Eq. (12)]
and the required %̂f [Eq. (6)] final density operators. The
numerical optimization can be performed by means of,
e.g., the conjugate gradient method [23]. Because of the
special linear property of the mappings T �p1(̂1 �
p2(̂2� � p1T �(̂1� � p2T �(̂2� for p1 � p2 � 1, it is suf-
ficient to study the convergence for pure initial states,
which are the arbitrary linear superpositions of the
ground states. Our aim is to reach a prescribed destination
density operator by applying the same fixed laser pulse
sequence for all initial states.

Let us consider a concrete example to demonstrate the
efficiency of the proposed state-engineering method: We
choose the destination density operator as

%̂ f �
1
3j 

�1�
f ih �1�

f j � 2
3j 

�2�
f ih �2�

f j; (14)

with two pure states

j �1�
f i �

2
7e
i�=3

3
7e
i�=5

6
7
0

2
6664

3
7775; j �2�

f i �

3
5

4
5e
i�=7

0
0

2
6664

3
7775: (15)

First, we discuss the case when �ext � Rp � 0: The

initial set H is obtained by discretizing the four-
dimensional parameter space —two relative phases and
two relative amplitudes—describing the possible pure
initial states. Then we take a four-step excitation process,
i.e., N � 4 in Eq. (12), and use the conjugate gradient
method to minimize the functional J �fEg; %̂in; %̂f� of
Eq. (13) on the subset H , %̂in � j inih inj, and j ini 2

H . The outcome of the optimization is a sequence of
four polarization angles and relative phases
(’�l�; ��l�; ��l�

� ; �
�l�
� ) for l � 1; . . . ; 4, which characterize

the pulse sequence fEg. This pulse sequence affects for
any initial state such a final state, for which the mismatch
Eq. (13) is less than � 10�5 (limited by machine preci-
sion). The subsequent stages of the transformation of the
initial set H are shown in Fig. 2. After the first pulse
[Fig. 2(a)] the closure of the transformed initial set is the
surface of the Bloch sphere. The second step [Fig. 2(b)]
yields an elongated cigar shape, while the third step
yields an ellipsoid [Fig. 2(c)] distribution. Finally, the
fourth step [Fig. 2(d)] contracts the distribution to a
pointlike region in the Bloch sphere with a radius of about
193003-3



FIG. 2 (color online). The transformation of the initial-state
set after the (a) first, (b) second, (c) third, and (d) fourth
excitation steps, shown in the Bloch sphere of the two-
dimensional dark subspace. The coordinates are defined
through the relation %̂ � 1

2 �1� x�̂x � y�̂y � z�̂z�, where �̂q
are the Pauli’s spin operators. The projections of the distribu-
tions to the coordinate planes are also shown.
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� 10�5. Then we solve numerically the master equation
(2) by inserting the obtained optimal pulse sequence,
with a constant � � 1 and �in � 1. The pulse duration
for each step should be chosen so that the relaxation
process into the actual dark subspace terminates practi-
cally. These times can be estimated from the eigenvalues
of the matrix M: the one with the smallest absolute real
part limits the speed of the convergence. We note that we
have found convergence for any other prescribed final
state as well; however, the required number of steps
depends on the purity of the target state: the purer the
state [i.e., p�1�

f � p�2�
f or p�1�

f � p�2�
f in Eq. (6)], the larger

the number of steps required.
For nonzero �ext and Rp the optimization of the pulse

sequence can be done as in the previous case. In a four-
step process, the numeric optimization yielded a pulse
sequence for which the mismatch [Eq. (13)] is less than
� 10�5. We have found that the shape of the initial
distribution transforms in the course of the subsequent
stages of the excitation process in the same manner as
before. Then we solved numerically the master equation
using the obtained optimal pulse sequence, setting the
Rabi frequency �, the decay constants �in and �ext, and
the repumping rate Rp to unity: we have found that the
process converges similarly to the previous case. We note
that the ratios of �in, �ext, and Rp influence the rapidity of
the convergence. For sufficiently long time steps the pro-
cess always converges.

In summary, we have worked out a scheme to create
any pure or wide class of mixed states in a four-state
degenerate � system. Our method is based on an
excitation-relaxation process that drives the state of the
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system into the dark subspace of the Hamiltonian that
governs the dynamics without the decay processes.
Although our method is not adiabatic, it is robust, because
the final state is insensitive to the fluctuations in the pulse
area of the applied laser field. A particular advantage of
the method compared to the adiabatic schemes is that here
we have greater freedom to choose the field amplitude.
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