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We perform a rigorous computation of the specific heat of the Ashkin-Teller model in the case of
small interaction and we explain how the universality-nonuniversality crossover is realized when the
isotropic limit is reached. We prove that, even in the region where universality for the specific heat holds,
anomalous critical exponents appear: for instance, we predict the existence of a previously unknown
anomalous exponent, continuously varying with the strength of the interaction, describing how the
difference between the critical temperatures rescales with the anisotropy parameter.
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More than half a century ago Ashkin and Teller (AT)
[1] introduced their model as a generalization of the Ising
model to a four component system. It describes a bidi-
mensional lattice, each site of which is occupied by one of
four kinds of atoms: A, B, C, D. Two neighboring atoms
interact with an energy: "0 for AA, BB, CC, DD; "1 for
AB, CD; "2 for AC, BD; and "3 for AD;BC. Fan [2] has
shown that the AT model can be also written in terms of
Ising variables ��1�

x � �1, ��2�
x � �1 located at each site

of the lattice; its Hamiltonian can be written, if x; y are
nearest neighbor sites as

HAT � �
X

x;y
J�1���1�

x �
�1�
y � J�2���2�

x �
�2�
y

� ���1�
x �

�1�
y �

�2�
x �

�2�
y ; (1)

with J�1� � ��"0 � "1 � "2 � "3�=4, J�2� � ��"0 � "2 �
"1 � "3�=4, � � ��"0 � "3 � "1 � "2�=4, and � is the
inverse temperature. The AT model is then equivalent to
two Ising models coupled by an interaction quartic in the
spins; the case in which the two Ising subsystems are
identical J�1� � J�2� is called isotropic, the opposite case
anisotropic. When the coupling � is equal to 0, the AT
reduces to two independent Ising models and it has of
course two critical temperatures if J�1� � J�2�. We shall
consider the case of J�1�; J�2� fixed and positive (for
definiteness).

Layers of atoms and molecules adsorbed on clean
surfaces, like submonolayers of Se adsorbed on Ni, are
believed to constitute physical realizations of the AT
model [3–5]; theoretical results on it can explain the
phase diagrams of such systems, experimentally obtained
by means of electron diffraction techniques. As for the
Ising model, the importance of AT is also in providing a
conceptual laboratory in which the highly nontrivial phe-
nomenon of phase transitions can be understood quanti-
tatively in a relatively manageable model; in particular, it
has attracted great theoretical interest because is a simple
and nontrivial generalization of the Ising and four-state
Potts models.
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Contrary to many 2D models in statistical mechanics
like the Ising, the 6, or the 8 vertex models [6], in which
remarkable exact solutions give us very detailed infor-
mation about the behavior of thermodynamical functions,
there are no exact results on the AT model except for the
trivial � � 0 case. It is believed [7] that the AT has two
critical temperatures for J�1� � J�2� which coincide at the
isotropic point J�1� � J�2�. Moreover, it was conjectured
by Kadanoff [8] and Baxter [6] that the critical properties
in the anisotropic and in the isotropic case are completely
different; in the first case the critical behavior should be
described in terms of universal critical indices (identical
to those of the 2D Ising model), while in the isotropic case
the critical behavior should be nonuniversal and described
in terms of indexes which are nontrivial functions of �. In
other words, the AT model should exhibit a universal-
nonuniversal crossover when the isotropic point is
reached.

Evidence for the validity of nonuniversal behavior in
the isotropic case was given in [9] (using second order
renormalization group arguments) and in [10,11] (by a
heuristic mapping into the massive Luttinger model de-
scribing one dimensional interacting fermions in the
continuum). The anisotropic case was studied numeri-
cally by Migdal-Kadanoff renormalization group [5],
Monte Carlo renormalization group [12], finite size scal-
ing [13]; such results give evidence of the fact that, far
away from the isotropic point, AT has two critical points
and belongs to the same universality class of the Ising
model but give essentially no information on the critical
behavior when the anisotropy is small.

In this Letter, we present a rigorous derivation of the
specific heat for the AT model, valid for small interaction
� and any anisotropy. We find indeed that in the aniso-
tropic case the specific heat is singular in the correspon-
dence of two critical temperatures, and the divergence is
logarithmic as in the Ising model, in agreement with
universality hypothesis. Nevertheless, even in the region
where universality holds, anomalous critical exponents
appear; for instance the difference between the two criti-
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FIG. 1 (color online). The behavior of the difference G be-
tween the interacting critical temperatures normalized to the
free one, for two different values of �; depending on the sign of
the interaction, it diverges or vanishes in the isotropic limit.
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cal temperatures rescales with the anisotropy parameter
with a nonuniversal critical exponent. The presence of
such critical exponents also in the universality region
clarify how the universal-nonuniversal crossover is real-
ized when the isotropic limit is reached.

Such results are found by the new methods introduced
in [14,15] to study 2D statistical mechanics models which
can be considered perturbations of the Ising model. These
methods take advantage from the fact that such systems
can be exactly mapped in models of weakly interacting
relativistic fermions in d � 1� 1 on a lattice. The map-
ping was known since long time (see Refs. [10,16–18]);
however, in recent years great progress has been achieved
in the evaluation of Grassmann integrals of interacting
models, in the context of quantum field theory and solid
state physics (see Refs. [19–21]), and one can take ad-
vantage of this new technology to get information about
2D statistical mechanics models. This provides the only
method to get rigorous quantitative information on the
critical properties of such systems if an exact solution is
lacking, as in the present case. The algorithm is based on
multiscale analysis and allows us to prove convergence of
the expansion for the energy-energy correlation functions
and for the specific heat up to the critical temperature;
essential ingredients of our analysis are cancellations due
to anticommutativity of fermionic variables and approxi-
mate Ward identities [22], guaranteeing that the flow of
the effective coupling constants is not diverging in the
infrared region. We stress that our method applies to a
large class of perturbations of the 2D Ising model, and for
sake of definiteness we restrict our analysis to AT.

In order to present our result, we find it convenient to
introduce the variables

t �
t�1� � t�2�

2
; u �

t�1� � t�2�

2
; (2)

with t�j� � tanhJ�j�, j � 1; 2. The parameter t has the role
of a reduced temperature and u measures the anisotropy
of the system. We shall consider the free energy or the
specific heat as functions of t; u; �. When � � 0 the
specific heat Cv can be immediately computed from the
Ising model exact solution; Cv is diverging at t � t�c ����
2

p
� 1� juj and near the critical temperatures the spe-

cific heat shows a logarithmic divergence: Cv ’
�C logjt� t�c j, where C> 0. If the anisotropy is strong
the two Ising subsystems have very different critical
temperatures, hence one can expect that if one system is
almost critical the second one will be out of criticality;
then mean field arguments based on the fact that two Ising
are coupled by a density-density interaction suggest that
the effect of the coupling is to change at most the value of
the critical temperatures. On the other hand if the anisot-
ropy is small the two system will become critical almost
at the same temperature and the properties of the system
could change drastically.
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Our main result is the following theorem; the detailed
proof can be found in [15,23].

Theorem: For � small enough the AT model admits two
critical points of the form

t�c ��; u� �
���
2

p
� 1� ���� � juj1��
1� ���; u��:

Here � and � are O��� corrections and � � �b��
O��2� with b > 0. If t � t�c the free energy of the model
is analytic in �; t; u, and the specific heat Cv is equal to

�F1�
2�c log

jt� t�c j � jt� t�c j

�2 � F2
1��2�c

�c
� F3; (3)

where 2�2 � �t� t�c �2 � �t� t�c �2; �c � a��O��2�,
a � 0; and F1 , F2, F3 are functions of t; u; �, bounded
above and below by O�1� constants.

(1) First note that the location of the critical points is
dramatically changed by the interaction. The difference
of the interacting critical temperatures normalized with
the free one G��; u� 
 
t�c ��; u� � t�c ��; u��=
t

�
c �0; u� �

t�c �0; u�� rescales with the anisotropy parameter as a
power law �juj�, and in the limit u! 0 it vanishes or
diverges, depending on the sign of � [this is because � �
�b��O��2�, with b > 0]. In Fig. 1 we plot the qualita-
tive behavior of G��; u� as a function of u, for two differ-
ent values of � (i.e., we plot the function u�, with
� � 0:3;�0:3, respectively).

As far as we know, the existence of the critical index
���� was not known in the literature, even at a heuristic
level.

(2) There is universality for the specific heat, in the
sense that it diverges logarithmically at the critical
points, as in the Ising model. However, the coefficient
of the log is anomalous: in fact if t is near to one of the
critical temperatures � ’

���
2

p
juj1�� so that the coefficient

in front of the logarithm behaves like �juj2�1����c , with
�c a new anomalous exponent O���; in particular, it is
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vanishing or diverging as u! 0 depending on the sign of
�. We can say that the system shows an anomalous
universality which is a sort of new paradigmatic behav-
ior: the singularity at the critical points is described in
terms of universal critical indexes; nevertheless, in the
isotropic limit u! 0, some quantities, such as the differ-
ence of the critical temperatures and the constant in front
of the logarithm in the specific heat, scale with anoma-
lous critical indexes, and they vanish or diverge, depend-
ing on the sign of �.

(3) Equation (3) clarifies how the universality-
nonuniversality crossover is realized as u! 0.When u �

0 only the first term in Eq. (3) can be log singular in
correspondence of the two critical points; however, the
logarithmic term dominates on the second one only if t
varies inside an extremely small region O�juj1��e�c=j�j�
around the critical points [here c is a positive O�1� con-
stant]. Outside such region the power law behavior corre-
sponding to the second addend dominates. When u! 0
one recovers the power law decay found in the isotropic
case

Cv ’ F2
1� jt� tcj2�c

�c
:

In Fig. 2 we plot the qualitative behavior of Cv as a
function of t. The three graphs are plots of Eq. (3), with
F1 � F2 � 1, F3 � 0, u � 0:01, t�c �

���
2

p
� 1� juj1�

and � � �c � 0:1; 0;�0:1, respectively; the central
curve corresponds to the case � � 0, the upper one to
�< 0 and the lower to �> 0.

We now sketch the proof of the above theorem (for a
detailed proof we refer to [15,23]).We start from the well-
known representation of the Ising model free energy in
terms of a sum of Pfaffians [24] which can be equiva-
lently written (see Refs. [17,18]) as Grassmann functional
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FIG. 2 (color online). The behavior of the specific heat Cv for
three different values of �, showing the log singularities at the
critical points. In the isotropic limit the two critical points tend
to coincide; the lower curve becomes continuous while the
upper develops a power law divergence.
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integrals, formally describing massive noninteracting
Majorana fermions  ; on a lattice with action

X

x

t
4

 x�@1 � i@0� x �  x�@1 � i@0� x � 2i x�@1

� @0� x� � i�
���
2

p
� 1� t� x x; (4)

where @j are discrete derivatives; criticality corresponds
to the massless case. If � � 0 the free energy and specific
heat of the AT model can be written as sum of Grassmann
integrals describing two kinds of Majorana fields, with
masses m�1� � t�1� �

���
2

p
� 1 and m�2� � t�2� �

���
2

p
� 1.

If � � 0 again the free energy and the specific heat can
be written as Grassmann integrals, but the Majorana
fields are interacting with a short range potential. By
performing a suitable change of variables and integrating
out the ultraviolet degrees of freedom, the effective action
can be written as

Z1

X

x;!;&

 �

!;x�@1 � i!@0� �
!;x � i!�1 �

!;x �
�!;x

� i!'1 
&
!;x 

&
�!;�x � �1 

�
1;x 

�
1;x 

�
�1;x 

�
�1;x� �W 1;

where & � � is a creation-annihilation index and ! �
�1 is a quasiparticle index. �1 and '1 have the role of
two masses and it holds �1 � O�t�

���
2

p
� 1� �O���,

'1 � O�u�. W 1 is a sum of monomials of  of arbitrary
order, with kernels which are analytic functions of �1;
analyticity is a very nontrivial property obtained exploit-
ing anticommutativity properties of Grassmann variables
via Gram inequality for determinants. The  � are Dirac
fields, which are combinations of the Majorana variables
 �j�;  �j�, j � 1; 2, associated with the two Ising
subsystems.

One can compute the partition function by expanding
the exponential of the action in Taylor series in � and
naively integrating term by term the Grassmann mono-
mials, using the Wick rule; however, such a procedure
gives poor bounds for the coefficients of this series that,
in the thermodynamic limit, can converge only far from
the critical points.

In order to study the critical behavior of the system we
perform a multiscale analysis involving nontrivial resum-
mations of the perturbative series. The first step is to
decompose the propagator ĝ�k� as a sum of propagators
more and more singular in the infrared region, labeled
by an integer h � 1, so that ĝ�k� �

P1
h��1 ĝ

�h��k�,
ĝ�h��k� � *�h. We compute the Grassmann integrals
defining the partition function by iteratively integrating
the propagators ĝ�1�; ĝ�0�; . . . . After each integration
step we rewrite the partition function in a way similar
to the last equation, with Zh; �h;'h; �h;W h replacing
Z1; �1; '1; �1;W 1, in particular, the masses and the wave
function renormalization are modified; the structure of
the action is preserved because of symmetry properties;
moreover W h is shown to be a sum of monomials of  of
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arbitrary order, with kernels decaying in real space on
scale *�h, which are analytic functions of f�h; . . . ; �1g, if
�k are small enough, k � h, and j�kj*�k; j'kj*�k � 1;
again analyticity follows from Gram-Hadamard type of
bounds.

All of the above construction is based on the crucial
property that the effective interaction at each scale does
not increase j�hj � 2j�j; such a property is a consequence
of the validity of some nonperturbative approximateWard
identities [22]; ‘‘approximate’’ refers to the fact that,
because of the presence of masses and of an ultraviolet
cutoff, the Ward identities are different from the usual
formal ones; the error terms are shown to be small, in a
suitable sense. For �h;'h; Zh, we find that, under the
iterations, they evolve as �h ’ �1*

b2�h, 'h ’ '1*
�b2�h,

Zh ’ *�b1�2h, with b1; b2 explicitly computable in terms
of a convergent power series.

We perform the iterative integration described above up
to a scale h�1 such that �j�h�1 j � j'h�1

j�*�h�1 � O�1�. For
scales lower than h�1 we return to the description in terms
of the original Majorana fermions  �1;�h�1�,  �2;�h�1� asso-
ciated with the two Ising subsystems. One of the two fields
[say  �1;�h�1�] is massive on scale h�1 (so that the Ising
subsystem with j � 1 is ‘‘far from criticality’’ on the
same scale); then we can integrate the massive
Majorana field  �1;�h�1� without any further multiscale
analysis, obtaining an effective theory of a single
Majorana field with mass j�h�1 j � j'h�1

j, which can be
arbitrarily small; this is equivalent to saying that on scale
h�1 we have an effective description of the system as a
single perturbed Ising model with anomalous parameters
near criticality. The integration of the scales � h�1 is
performed again by a multiscale decomposition similar
to the one just described; an important feature is, how-
ever, that there are no more quartic marginal terms,
because the anticommutativity of Grassmann variables
forbids local quartic monomials of a single Majorana
fermion. Criticality is found when the effective mass on
scale �1 is vanishing; the values of t; u for which this
happens are found by solving a nontrivial implicit func-
tion problem.

Technically it is an interesting feature of this problem
that there are two regimes in which the system must be
described in terms of different fields: a first one in which
the natural variables are Dirac-Grassmann variables, and
a second one in which they are Majorana; the scale h�1
separating the two regimes is dynamically generated by
the iterations. In the first regime the two entangled Ising
subsystems are undistinguishable, the natural description
is in terms of Dirac variables, and the effective interaction
is marginal. In the integration of such scales nonuniversal
indexes appear. In the second region the two Ising sub-
systems really look different, one appears to be (almost)
at criticality and the other far from criticality on the same
190603-4
scale. The parameters of the two subsystems are deeply
changed (in an anomalous way) by the previous integra-
tion. In this region the effective interaction is irrelevant.

In conclusion, we have presented some new rigorous
results on the critical behavior in the Ashkin-Teller
model, for weak coupling and any value of the anisotropy.
Via multiscale integration methods we have computed the
specific heat and the location of the critical temperatures
in terms of convergent power series and we have predicted
the existence of an unknown critical exponent describing
the scaling of the gap between the critical temperatures in
the isotropic limit. Moreover, we gave a detailed descrip-
tion of the crossover between the universal critical behav-
ior holding in the anisotropic case and the anomalous
nonuniversal behavior holding in the isotropic limit.
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