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Power-Law Tail Distributions and Nonergodicity
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We establish an explicit correspondence between ergodicity breaking in a system described by power-
law tail distributions and the divergence of the moments of these distributions.
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Statistical mechanics is a combination of the law of
large numbers and the laws of mechanics. Since its foun-
dation in the late 19th century, this theory has been
extremely successful in describing equilibrium and non-
equilibrium properties of a very large number of macro-
scopic systems [1]. In the last decade, however, a new
class of systems that does not obey the law of large
numbers has emerged [2,3]. The behavior of these systems
is dominated by large and rare fluctuations that are char-
acterized by broad distributions with power-law tails. The
hallmark of these statistical distributions, commonly re-
ferred to as Lévy statistics [4], is the divergence of their
first and/or second moment.

The question we address in this Letter is how ergodic-
ity is affected in systems described by power-law tail
distributions with diverging moments. Ergodicity is a
central concept in statistical physics and is usually stated
by saying that ensemble average and time average of
observables are equal in the infinite-time limit [5,6].
The ergodic hypothesis has recently been investigated
experimentally in two different systems governed by
Lévy statistics in time: fluorescence intermittency of
nanocrystal quantum dots [7] and subrecoil laser cooling
of atoms [8]. Both experiments have found that Lévy
statistics induces ergodicity breaking. A precise under-
standing of the connection between divergent moments
and nonergodicity is thus of high interest. A common
feature of the systems in the above experiments is their
nonstationarity. This is in contrast to the system we
propose to study, namely, atomic transport in an optical
lattice, where a steady state does exist. Nonetheless, we
show that this system can exhibit nonergodic behavior.

An optical lattice is a standing wave light field formed
at the intersection of two or more laser beams [9].
Because of the spatial periodicity of the potential, an
optical lattice is similar in many respects to a solid state
crystal. The main advantage of an optical lattice, how-
ever, is its high tunability: both the period and the am-
plitude of the optical potential can be modified in a
controlled way. This has the interesting consequence
that the exponents of the power-law distributions appear-
ing in this system are not fixed, as in most systems, but
can be varied continuously, allowing the exploration of
different regimes.
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The motion of atoms in a one-dimensional optical
lattice formed by two counterpropagating laser beams
with linear perpendicular polarization can be described,
after spatial averaging, by a Fokker-Planck equation for
the semiclassical Wigner function W�p; t� [10–12],
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The momentum-dependent drift and diffusion coeffi-
cients are, respectively, given by
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2 : (2)

The drift K�p� corresponds to a cooling force with fric-
tion coefficient 	, while the diffusion coefficient D�p�
represents stochastic momentum fluctuations and de-
scribes heating processes. It is worth noticing that for
large momentum, the range of the drift is limited by the
capture momentum pc, while the range of the fluctuations
is not. The kinetic equation (1) is valid in a regime where
(i) the atomic momentum is large, p� �hk, where k is the
wave number of the laser field (this defines the semiclas-
sical limit), (ii) the saturation parameter is small, s	 1
(this corresponds to low laser intensity), and (iii) the
kinetic energy of the atoms is large, p2=2m� U0, where
U0 is the depth of the optical potential (this last condition
allows spatial averaging). The stationary solution of the
atomic transport equation (1) which satisfies natural
boundary conditions, Ws�p! �1� ! 0, is of the form
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where Z is a normalization constant. The momentum
distribution (3) has an asymptotic power-law tail,
Ws�p� 
 jpj��	p2

c�=D0 , with an exponent that can be ex-
pressed in terms of the potential depth U0 and the recoil
energy ER as �	p2

c�=D0 � U0=�22ER� [10]. The statistical
properties of the distribution (3) can therefore be easily
changed from normal statistics for U0 � 66ER to Lévy
statistics for U0 < 66ER by simply modifying the depth
of the optical potential. In particular, one should note that
the second moment, hp2i �

R
dpp2Ws�p�, becomes infi-

nite when U0 < 66ER. In this regime the mean kinetic
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energy of the system, EK � hp2i=2m, diverges, clearly
signaling unusual thermodynamic behavior.

Transport in an optical lattice has a number of attrac-
tive features that make it an ideal case study of the
thermodynamical properties of systems described by
power-law distributions. On the one hand, the atomic
transport equation (1) has been derived from the micro-
scopic Hamiltonian that describes the interaction with the
laser fields and the quantities that appear in this equation
can be expressed in terms of the microscopic parameters
of the quantum-optical problem [10]. Moreover, the re-
gime defined by conditions (i)–(iii) has been imple-
mented experimentally and the divergence of the
kinetic energy below a given potential threshold has
been observed [13]. Finally, Eq. (1) is an ordinary linear
Fokker-Planck equation, meaning that standard methods
of stochastic calculus can be used to analyze the problem.
This is in contrast to most systems with power-law dis-
tributions that are often described by nonlinear or frac-
tional kinetic equations [14]. In particular, for the case of
vanishingD1 (which we shall consider in the sequel [15]),
Eq. (1) corresponds to a random process driven by addi-
tive Gaussian white noise. The fact that power-law fluc-
tuations with infinite variance occur here in a system
subjected solely to additive noise is worth emphasizing.
The physical mechanism which gives rise to divergent
fluctuations in systems with multiplicative noise, where
the noise strength is proportional to the stochastic vari-
able, is well-known [16]: it is based on a positive feedback
loop that leads to the amplification of the noise as the
value of the random variable increases. On the other hand,
in the present situation, where the noise intensity is inde-
pendent of the random variable, a different positive feed-
back mechanism is at work, based on the steady decrease
to zero of the friction force as the value of the momentum
increases. The appearance of infinite momentum fluctua-
tions in this system is thus a striking illustration of the
complex behavior that can result from the subtle interplay
of the noise and the nonlinearity of the drift. In the
following, we establish a correspondence between the
divergent moments of the power-law distributions of the
system and nonergodic behavior.

We begin by transforming the Fokker-Planck equation
(1) into a Schrödinger-like equation by writingW�p; t� �
Ws�p�1=2 �p; t� [17]. The function  �p; t� satisfies the
imaginary-time Schrödinger equation,
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@p2 � V�p� � H ; (4)

with the potential V�p� � K0�p�=2� K�p�2=�4D0�. For
the drift coefficient (2), this potential reads V�p� �
�	p2

c�=�4D0��p2�	p2
c� 2D0�� 2D0p2

c�=�p2 �p2
c�

2. This
transformation reveals the fundamental difference be-
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tween the case of finite pc and the case of infinite pc,
where Eq. (1) reduces to the familiar Ornstein-Uhlenbeck
process with linear drift. For infinite pc, the Schrödinger
potential V�p� asymptotically increases as p2, whereas
for finite pc, it asymptotically decreases as 1=p2. By
contrast, the Fokker-Planck potential, ��p� �
�
Rp
0 dp

0K�p0�, is confining for any value of the capture
momentum. As a consequence, the spectrum of the
Hamiltonian, H k�p� � Ek k�p�, is discrete in the for-
mer case, while it is continuous, except for the discrete
ground state  0�p�, in the latter. In both cases, the sta-
tionary momentum distribution is given by the square of
the ground state eigenfunction, Ws�p� �  0�p�2. To sim-
plify the discussion, we now adopt rescaled variables for
which 	 � pc � 1 and D0 � D, the noise intensity D
being then the only remaining parameter in the problem.
It will also be convenient to divide momentum space into
a low-momentum region jpj< 1, where the drift is ap-
proximately linear, K1�p� ’ �p, and a high-momentum
region jpj> 1, with a drift K2�p� ’ �1=p. The anoma-
lous dynamics of the system is completely determined by
the high-momentum region. The eigenvalues and eigen-
functions of the Hamiltonian H in this region are given
by Ek � Dk2 and  k�p� �

����
p

p
�c1J��kp� � c2Y��kp��,

where J��p� and Y��p� are the Bessel functions of the
first and the second kind of order � � �D� 1�=2D. The
constants c1;2 are fixed by the boundary conditions.

When discussing the ergodicity of a system, one is
typically not interested in the trajectory in the full
space-space, but often in the projection of the trajectory
onto some subspace of relevant variables [1], in the
present case momentum. A criterion for the equality of
ensemble average and time average of a dynamical quan-
tity A is then provided by the condition [18]

�2
A�t� � h�A� hAi�2i ! 0 when t! 1: (5)

Here A � t�1
R
t
0 d�A�p���� is the time average of the

observable A and hAi �
R
dpA�p�W�p; t� denotes its

ensemble average. In the infinite-time limit, the latter
tends to the stationary ensemble average hAis �R
dpA�p�Ws�p�. A system that obeys (5) is said to be

ergodic in the mean square sense. In order to determine
the ergodicity of our system, we thus need to compute the
long-time behavior of the covariance,

�2
A�t� �

1

t2
Z t

0
dt1

Z t

0
dt2�hA�p�t1��A�p�t2��i

� hA�p�t1��ihA�p�t2��i�: (6)

This can be done by applying the usual theory of stochas-
tic processes [17]. The two-time correlation function
hA�p�t1��A�p�t2��i is defined by the integral
hA�p�t1��A�p�t2��i �
ZZ

dp1dp2A�p1�A�p2�W2�p1; t1;p2; t2�; (7)
190602-2



Noise strength D

P
ro

b
a
b
il
it
y

P
1
↪2

(D
)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

FIG. 1 (color online). Probability to be in the low-momentum
region (continuous line) and in the high-momentum region
(dashed line), in the long-time limit, as a function of the noise
strength D.
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where W2�p1; t1;p2; t2� is the two-point joint probability
density function. Since the Fokker-Planck equation (1)
describes a stationary Markov process (for any value of
pc), the probability distribution W2�p1; t1;p2; t2� depends
only on the time difference jt1 � t2j and can be expressed
in terms of the eigenvalues and eigenfunctions of the
Schrödinger equation (4) in the form

W2�p1; t1;p2; t2� �  0�p1� 0�p2�

�
 0�p1� 0�p2�

�
Z 1

0
dk k�p1� k�p2�e�Ekjt1�t2j

�
:

(8)

Combining Eqs. (6)–(8) and introducing the variable � �
t2 � t1, we arrive at

�2
A�t� �

2

t2
Z t

0
d��t� ��CA���; (9)

where the function CA��� is given by

CA��� �
Z 1

0
dk

�Z
dpA�p� 0�p� k�p�

�
2
e�Ek�: (10)

The infinite-time limit of the covariance �2
A�t� is entirely

determined by the asymptotic behavior of CA���. This
function depends explicitly on the observable A�p�. It is
worthwhile to notice that ergodicity will therefore in
general depend on the dynamical variable A�p� under
consideration. In the following, we take A�p� � pn and
evaluate the long-time behavior of CA��� following
Ref. [12]. We find CA��� 
 ��# with an exponent # �
�1� �2n� 1�D�=2D. As a result, the covariance (9) will
converge to zero as t! 1, only if D<Dn � 1=�2n� 1�.
We thus obtain the important result that there is a noise
threshold Dn above which ergodicity is broken. As al-
ready mentioned, this threshold depends explicitly on the
parameter n, that is, on the quantity A�p�: the smaller the
power n, the larger the value ofDn. On the other hand, the
moments of the stationary momentum distribution,
hpmi �

R
dppmWs�p�, are finite for D<D0

m � 1=
�m� 1�. We can therefore conclude that there exists a
direct relationship between the loss of ergodicity in the
system for the variable A�p� � pn and the divergence of
the 2nth moment of the stationary momentum
distribution.

Let us now look in more detail at the value n � 0,
which corresponds to the largest noise threshold Dn�0 �
1. We first mention that for D>Dn�0, the Fokker-Planck
equation does not have a normalizable stationary solution
anymore and the system is obviously nonergodic. Further,
for n � 0, the function CA��� can be rewritten in terms of
the conditional probability density P2�p2; �jp1; 0� as

CA��� �
Z
dp1Ws�p1�

Z
dp2�P2�p2; �jp1; 0� �Ws�p2��:

(11)

This result is of special interest. Equation (11) shows that,
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unlike for the Ornstein-Uhlenbeck process, the steady
state is here reached in a nonexponential way, CA��� 

��D�1�=2D. The origin of this algebraic behavior is of
course rooted in the nonlinear drift coefficient (2).

A closely related quantity is the first-passage time
distribution. The first-passage time is defined as the time
at which the momentum of the system first exits a certain
momentum interval, given that it was originally in that
interval. The first-passage time problem for the Fokker-
Planck equation (1) can again be treated using standard
techniques of stochastic calculus. In the high-momentum
region, the Laplace transform g2�s� of the first-passage
time distribution obeys the following backward equation:

D
@2g2
@p2 �

1

p
@g2
@p

� sg2 � 0: (12)

Solving Eq. (12) with the boundary conditions g�1� � 1
and g�1� � 0, we obtain

g2�s� �
K��p

���������
s=D

p
�

K��
���������
s=D

p
�
p�; (13)

whereK��p� is the modified Bessel function of the second
kind of order � � �D� 1�=2D. It follows from Eq. (13),
that to leading order, g2�s� 
 s� as s! 0. The first-
passage time distribution in region 2 is thus also a
power-law tail distribution, and it asymptotically behaves
as g2�t� 
 t�& with an exponent & � �3D� 1�=�2D�. The
corresponding moments htni �

R
dttng2�t� converge if

D<D00
n � 1=�2n� 1�. The first-passage time distribu-

tion g1�t� in region 1 can be computed along similar lines
and the associated moments can be shown to be all finite.
Figure 1 shows the probability to be in regions 1 and 2, in
the limit of long times, as a function of the noise intensity
D. We observe that for small D, atoms are mostly located
in the low-momentum region, where they experience the
linear part of the drift. On the other hand, for D close to
Dn�0, atoms get localized in the high-momentum region,
where the drift asymptotically decays as �1=p. Re-
markably, atoms in this system can thus be brought in a
high-energy state through the sole action of the noise. We
190602-3



VOLUME 93, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S week ending
5 NOVEMBER 2004
note that this problem exhibits an interesting analogy
with subrecoil laser cooling, where atoms accumulate in
a low-energy state (in a so-called dark state), with infinite
mean trapping time [19]. To our knowledge, loss of ergo-
dicity in systems with divergent trapping times has been
first discussed in the context of spin glasses [20].

We can now formulate the main result of our Letter:
Ensemble average and time average of the dynamical
variable A�p� � pn stop being equal in the infinite-time
limit —ergodicity of the system is accordingly broken—
when the 2nth moment of the stationary momentum
distribution and the �n� 1�th moment of the first-passage
time distribution in the high-momentum region become
infinite. An unambiguous correspondence between the
nonergodic properties of a system described power-law
distributions and the divergence of their respective mo-
ments is therefore demonstrated. This confirms and ex-
tends the findings reported in Refs. [7,8,19]. We stress that
the above result is not restricted to transport in an optical
lattice and that our analysis applies to a whole class of
systems described by an equation of the form (1) with a
drift coefficient decaying asymptotically as �1=p.

Further insight can be gained by considering a discre-
tized form of the Fokker-Planck equation (1). In doing so,
we obtain a generalization of the Ehrenfest urn model,
which has played an important role in clarifying the
foundations of statistical mechanics [21]. We write p �
j
p and t � l
t and find that the probability !�j; l� �
W�j
p; l
t� satisfies the difference equation,

!�j; l� 1� � a�j� 1�!�j� 1; l� � b�j� 1�!�j� 1; l�:

(14)

In the limit �
p;
t� ! 0, Eq. (14) reduces to the con-
tinuous Eq. (1) with K�p� � 
p=
t�a�p� � b�p�� and
D � �
p�2=�2
t��a�p� � b�p��. The transition probabil-
ities a�j� and b�j� in (14) are explicitly given by

a�j� �
R�1� j2� � j

2R�1� j2�
; b�j� �

R�1� j2� � j

2R�1� j2�
: (15)

We recall that the Ehrenfest model consists of two urns
containing a total of 2R balls. At regular time intervals,

t, a ball is randomly chosen and moved to the other urn;
w�j; l� is then the probability of having R� j balls in the
first urn at time l. In the standard version of the model, the
j2 terms in Eq. (15) are absent and Eq. (1) reduces to the
Ornstein-Uhlenbeck process with linear drift. We note
that in the continuous description, the momentum p cor-
responds to the number of excess balls j in the first urn.
So, for example, ergodicity breaking for n � 1 (D> 1=3)
occurs when the fluctuations of the number of balls in
each urn diverge, the average number of balls being still
finite and equal. Moreover, when D approaches one, all
the balls preferentially occupy the same urn, therefore
acting as Maxwell’s demon.
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In conclusion, we have investigated anomalous trans-
port in an optical lattice from the point of view
of statistical mechanics and established an explicit cor-
respondence between ergodicity breaking and the diver-
gence of the moments of the power-law tail distributions
describing the behavior of the system, both in momentum
space and in time.
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