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Superscaling of Percolation on Rectangular Domains
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For percolation on �RL� � L two-dimensional rectangular domains with a width L and aspect ratio
R, we propose that the existence probability of the percolating cluster Ep�L; "; R� as a function of L, R,
and deviation from the critical point " can be expressed as F�"LytRa�, where yt � 1=� is the thermal
scaling power, a is a new exponent, and F is a scaling function. We use Monte Carlo simulation of bond
percolation on square lattices to test our proposal and find that it is well satisfied with a � 0:14�1� for
R> 2. We also propose superscaling for other critical quantities.
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Percolation models are related to many interesting
problems in sciences and are ideal systems for studying
universality and scaling in critical phenomena [1–6]. For
example, it has been found that the excess number of
clusters over the bulk value nc is a universal quantity
[3]; it has also been found that quite different percolation
models [4,5] have universal finite-size scaling functions
[7] for their existence probability of the percolating clus-
ters as far as the domains of the percolation models have
the same boundary conditions and aspect ratio. Here we
will study superscaling of percolation on domains with
different aspect ratios. For percolation on a �RL� � L
two-dimensional rectangular domains with horizontal
length �RL�, vertical length L, and aspect ratio R, we
propose that the existence probability Ep�L; "; R� as a
function of L, R, and deviation from the critical point "
can be expressed as F�"LytRa�, where yt � 1=� is the
thermal scaling power, a is a new exponent, and F is a
scaling function.We use the histogram Monte Carlo (MC)
simulation method [8] to study bond percolation on
square (SQ) lattices to test our proposal and find that it
is well satisfied with a � 0:14�1� for R> 2. We also find
that the percolation probability P for the same model has
nice superscaling behavior with a new exponent
b � 0:05�1�.

Consider a two-dimensional percolation problem on a
L1 � L2 domain, where L1 � RL and L2 � L. The cor-
relation function C�r� is the probability that two sites at a
distance r are in the same cluster. This C�r� is well
approximated to be

C�r� � A exp��r=��; (1)

with a constant A [9] and a correlation length �. Near the
critical point, � is written as

� � Bj�� �cj
��; (2)

with a nonuniversal constant B. When the system does not
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percolate, any pair of sites at the top and bottom of the
system are not in the same cluster. Ignoring multipoint
correlations [10], we can write the probability that there is
no percolating clusters, 1� Ep, as

1�Ep�
YL1

x�0

YL1

y�0

�1�C�
���������������������������
L2
2	�x�y�2

q
�


�
YL1

x�0

YL1

y�0

"
1�Aexp

 
�
L2

�

������������������������
1	

�x�y�2

L2
2

s !#
: (3)

In the continuous limit, we have:
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With substitution u � �x	 y�=L2 and v � �x� y�=L2

and the saddle-point approximation near v � 0, we have

log�1� Ep� / �
Z �L1=L2�
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dv exp
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Here, the range where the value of exp��L2v
2=2�� con-

tributes to the integration (4) is assumed to have power
law dependence on the aspect ratio. Therefore, the inte-
gration range of v extends from v � ��L1=L2�

! to
�L1=L2�

!, with an exponent! (see Fig. 1).With the aspect
ratio R � L1=L2 and L � L2, Eq. (4) becomes
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With e�t ’ 1� t for t� 1, Ep finally becomes
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FIG. 1. Schematic drawing for the meaning of !. The range
of v is taken from ��L1=L2�

! to �L1=L2�
! where the value of

exp��L2v
2=�2=��
 contributes to the integration in Eq. (4).
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Ep � erf
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Equation (7) implies that Ep can be written as

Ep�L; "; R� � F�"LytRa�; (8)

with a � 2!=�.
To test the previous argument, we use the histogram

MC simulation [8] to calculate Ep for bond percolation
model on LR� L SQ lattices with system sizes L � 64,
128, and 256, and R � 1, 2, 4, 8, and 16. Free boundary
conditions are taken for the vertical direction, and both
free and periodic boundary conditions are studied for the
horizontal direction. Averages are taken over 100 000 MC
samples at each density. The results are shown in Fig. 2,
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FIG. 2. Existence probability Ep of the system with (a) free
and (b) periodic boundary conditions. For each R, three system
sizes L � 64 128 and 256 are shown as solid, dotted, and
dashed line, respectively. Cardy’s exact results [11] are also
shown as 	 for comparing with our results.
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which are consistent with Cardy’s exact critical Ep for
free boundary conditions in both directions [11].

In the following, instead of the critical point for the
thermodynamic bulk system �c, the effective critical
density �0c defined by Ep��0c� � 0:5 for free and Ep��0c� �
0:636 65 for periodic boundary cases [12], is used in order
to correct for finite-size effects. This �0c is the density
when � becomes the order of the system size L. Thus the
�0c has L dependence like �0c � �c � dL�yt with a con-
stant d, which can be written as:

��� �0c�Lyt � ��� �c�Lyt 	 d: (9)

Thus the difference between using �c and using �0c is a
translation in the scaling variable. While d does not
depend on L and �, it is a function of R, see Fig. 3.

We show Ep as a function of ��� �0c�L
ytRa in Fig. 4,

where yt � 3=4 [1] and the scaling power a is determined
to be 0.14(1) for both free and the periodic boundary
conditions. Figure 4 shows good scaling behavior when
R> 2. Since our argument is rather general, it will be
valid for other percolation models studied in Refs. [4,5].

The systems with small R do not have good scaling
behavior, which can be understood from boundary effects
of the systems. The behavior of the correlation function of
Eq. (1) is assumed to be independent of the aspect ratio.
However, this assumption is not valid near the boundary.
The correlation functions C�r� of the systems with differ-
ent aspect ratios are shown in Fig. 5. While all curves
show the equivalent behavior for small r, they show
difference near boundaries. This difference is more re-
markable in the cases of R � 1 and 2 compared to cases
of larger R. Finally, the assumption is justified only when
the systems have large R.

The scaling behaviors in Fig. 4 would be improved by
taking into account higher-order corrections to the scal-
ing. In Eq. (8), the scaling variable �0 has a linear form as
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FIG. 3. Aspect ratio dependence of d in Eq. (9) for (a) free
and (b) periodic boundary conditions.
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FIG. 6. Nonlinear scaling results of existence probability Ep
of L � 256 system with (a) free and (b) periodic boundary
conditions. The scaling form is c2�2 	 c1�	 c0. The coeffi-
cients ci are listed in Table. I.
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FIG. 4. Scaling plots of existence probabilities Ep with yt �
3=4 and a � 0:14�1� for L � 256 systems with (a) the free and
(b) the periodic boundary conditions. All data (system sizes
L � 64, 128 and 256, and aspect ratios R � 1, 2, 4, 8, and 16)
are shown in the inset.
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�0 � ��� �c�LytRa � c0 	 c1�. Now we consider
higher-order for the scaling variables as �0 � f��� �
c0 	 c1�	 c2�2 [13]. Scaling results using such scaling
variables are shown in Fig. 6. It shows pretty good scaling
behavior, including systems with small R. This result
implies that the scaling between different aspect ratios
is not linear as proposed in Eq. (8). One of the reasons
why the scaling is nonlinear is that the correlation func-
tion is not isotropic in rectangular domains. It is difficult
to consider such aspect ratio dependence precisely; it
would be one of the problems for further studies.

If a physical quantity Q of a thermodynamic system is
of the form Q�t� � tx near the critical point t � 0, finite-
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FIG. 5. The correlation function C�r� with a distance r from a
center point of the system for (a) free and (b) periodic bound-
ary conditions. Decimal logarithm is taken for the vertical
axis. System size L is 64 and aspect ratios R are 1, 2, 4, 8, and
16. Averages are taken over 100 000 MC samples.
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size scaling theory states that for a finite system of linear
dimension L, the corresponding quantity Q�L; t� is of the
form [1,7] Q�L; t� � L�xytF�tLyt�, where F�y� (y � tLyt)
is the scaling function. For Ep, x � 0 [1,4]. Based on
general idea of finite-size scaling, we propose that Q of
a RL� L critical system, Q�L;R; t�, can be written as

Q�L;R; t� � �LytRb��xF�tLytRb�; (10)

where b is a new exponent for Q. To test Eq. (10), we
calculate the percolation probability P for bond percola-
tion (here x � ! � 5=36 [1]) on RL� L SQ lattices and
present the data in Fig. 7, which shows that Eq. (10) is well
satisfied with b � 0:05�1�.

It has been shown that the Ising-type spin models and
lattice hard-core particle model can be considered as
correlated percolation models [14], and some of such
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FIG. 7. Scaling plots of percolation probability P for R � 1,
2, 4, 8, and 16, and L � 128 with yt � 3=4 and b � 0:05�1�.
Data before scaling are shown in the inset. As in Fig. 4, �0c
(instead of �c) is used to define the horizontal variable to
reduce the finite-size effects.
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TABLE I. List of coefficients of the nonlinear scaling with
(a) free and (b) periodic boundary conditions. Coefficients of
third order c3 are also shown in order to show that the quadratic
form is enough for the nonlinear scaling [13].

R 1 2 4 8 16

(a) free conditions
c0 0 1.4(1) 2.3(1) 3.9(1) 5.9(2)
c1 1 �5:0�2� �8:6�5� �15:6�6� �24�1�
c2 0 6.4(5) 10.2(4) 17.6(6) 26(1)
c3 0 �0:046�3� 0.033(4) 0.070(2) 0.100(6)

(b) periodic conditions
c0 0 1.66(5) 4.6(1) 7.74(4) 6.85(5)
c1 1 �5:95�5� �18:2�4� �31:2�7� �27:8�7�
c2 0 7.25(7) 20.0(4) 33.5(7) 30.2(8)
c3 0 0.003(5) 0.059(4) 0.130(4) 0.150(7)
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correlated percolation models have been found to have
good finite-size scaling behaviors [15]. It is of interest to
study superscaling in such correlated percolation models
and other critical systems.
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