
VOLUME 93, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S week ending
5 NOVEMBER 2004
Aperiodic Quantum Random Walks
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We generalize the quantum random walk protocol for a particle in a one-dimensional chain, by using
several types of biased quantum coins, arranged in aperiodic sequences, in a manner that leads to a rich
variety of possible wave-function evolutions. Quasiperiodic sequences, following the Fibonacci pre-
scription, are of particular interest, leading to a sub-ballistic wave-function spreading. In contrast,
random sequences lead to diffusive spreading, similar to the classical random walk behavior. We also
describe how to experimentally implement these aperiodic sequences.
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FIG. 1. Probability distributions after 100 time steps for ten
equally spaced � values between 0 and �=2. The middle curve
corresponds to the standard Hadamard case. For � � 0, the
QCO is simply �z, and the quantum walk amounts to two
unrelated, left-right, ballistic moves, whose probability distri-
bution is not distinguished from the bounding box vertical
edges. For � � �=2, the QCO is �x, and the quantum walk
is confined near the origin.
A quantum random walk (QRW) is a natural extension
to the quantum world of the ubiquitous classical random
walk. It was first proposed in [1] and widely investigated
recently (see the recent review by Kempe [2]), mostly in
connection with possible applications to quantum algo-
rithms [3,4]. The generic discrete QRW consists in a
particle moving on a graph, in a direction depending on
its internal state (either called spin or chirality), the
simplest case being a spin 1

2 particle on a periodic chain.
In between each moving step, a unitary transformation,
called a ‘‘quantum coin operator’’ (QCO), is acted on the
particle spin state and shuffles the spin related amplitude
of the particle wave function. Most studies have been
focused on the so-called Hadamard transform, but more
general QCO can been used. A main difference between
the classical and quantum walks is seen on the particle
spreading, as measured by the long time dependence of

the standard deviation ��t� �
������������������������
hx2it � hxi2t

p
. The classical

case displays a diffusive behavior [��t� � t1=2] while the
quantum case is ballistic ���t� � t	, as can be proved in
one dimension from the exactly computed solution [5].
The latter result relies on the space periodicity of the
QRW process, which allows for a Fourier transformed
wave-function simple form. This calls to mind the behav-
ior of tight-binding Bloch electrons under standard quan-
tum evolution on a periodic lattice. It is therefore
tempting to check whether well-known effects of quasi-
periodicity in the latter case (such as a sub-ballistic
scaling with time of the standard deviation [6], or the
autocorrelation function [7]) can also be observed in
QRW. We address this question here by generalizing the
QRW to the case where different quantum coins are
applied along three types of sequences, either periodic,
quasiperiodic, and random.

The particle displacement is along a one-dimensional
periodic chain indexed by k 2 Z, with a corresponding
orthonormal basis fjkig spanning the position Hilbert
space HP. To the quantum coin part corresponds a two-
dimensional Hilbert space HC spanned by fj "i; j #ig. The
0031-9007=04=93(19)=190503(4)$22.50 
particle wave function reads

j�i �
X
s;k

a�s; k�jsi � jki; with s 2 f"; #g: (1)

The QRW unitary step operator S��� is the concatenation
of a displacement D which reads

D �
X
k

�j "ih" j � jk� 1ihkj � j #ih# j � jk� 1ihkj� (2)
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FIG. 2. Standard deviation ��t� of the probability distribu-
tions for periodically repeated approximant sequences (with
period length of, respectively, 2, 3, 5, and 8), and for the
asymptotic Fibonacci quasiperiodic sequence (bold line). The
latter clearly displays a sub-ballistic slope. These curves are
obtained with the parameters (� � �=3; � � �=6).
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following a quantum coin operator C���, a unitary trans-
formation acting on the spin sector. Here we mainly use
the rather simple QCO,

C��� �
�
cos��� sin���
sin��� � cos���

�
; (3)

which depends on a single parameter � 2 �0; �2	. Note that
C��� squares to the identity transformation.

For � � �=4, one recovers the widely studied
Hadamard walk, with its ballistic behavior. Other values
of � also give rise to the same behavior, with different
prefactors, except for � � �=2 (corresponding to the �x
Pauli matrix) for which the particle remains confined.
Note that for � � 0, the QCO reduces to the diagonal
Pauli matrix �z. In this case, the motion is completely
decoupled into ballistic (right going) spin up and (left
going) spin down parts, the latter acquiring a � phase at
each step. Figure 1 displays the typical wave-function
spreading for several � values, with an initial ket�j "i �
ij #i�=

���
2

p
, which allows for a symmetric probability

distribution.
Let us now combine two different step operators S���

and S��� into infinite sequences and compute the wave-
function spreading as measured by the exponent c��;��
in �� tc��;��. For periodic sequences, the long time
behavior is still found to be ballistic (see below for
quasiperiodic approximants), although displaying a
more complex structure at the scale of one period. This
suggests that new behaviors can be expected when the
period size tends to infinity, as for the quasiperiodic case
that we now study.

We consider a Fibonacci sequence, obtained by itera-
tion of the recursive rule Sn�1 � SnSn�1, with S0 � S���
and S1 � S���S���. Given a sequence Sn, the next one
can also be obtained using a substitution rule S��� !
S���S���, S��� ! S���. Only writing the � and � sym-
bols, the first sequences, called approximant sequences,
read �;��;���;�����;�������� . . . . The infinite
sequence is not periodic. Indeed the occurrence ratio of �
versus � tends to the irrational golden mean � � �1����
5

p
�=2, which cannot be displayed in the repeated unit cell

of a periodic sequence. This sequence is well known to be
quasiperiodic, a kind of order that has been widely in-
vestigated in the last 20 years in the context of quasicrys-
tals. The effect of a sequence of quasiperiodic unitary
transformations applied to a spin 1=2 has been studied by
Sutherland [8] and displayed a rich behavior. The latter
transformations were more generic than the simple QCO
used here, but were not coupled to a displacement, as in
the QRW. In the space sector, this sequence, when coding
a quasiperioc potential, is well known to cause a sub-
ballistic behavior for tight-binding electrons [6,7]. In
contrast, periodic repetition of the approximant sequen-
ces eventually leads to a ballistic spreading.
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A similar behavior is found here for the quasiperiodi-
cally shuffled QRW (with generic values of � and �).
Recall that the position space is here periodic, and that
the quasiperiodic modulation is applied with time in the
spin sector. The simulation was done for typically several
thousand random walk steps. Let us first compare the
spreading with time for periodically repeated small ap-
proximants and for the asymptotic quasiperiodic se-
quence. By the latter, we mean that we numerically
generate a long sequence whose length is larger than
both the chain length and the number of random walk
steps. The standard deviation is plotted in Fig. 2, which
clearly displays a qualitative difference between the
(asymptotically linear with time) periodic case and the
slower quasiperiodic case.

The sub-ballistic behavior is generic in the quasiperi-
odic case, whatever � and � are. But the asymptotic slope
c��;�� is not a smooth function, as seen on Fig. 3. The
‘‘diagonal’’ � � � corresponds to the periodic case and
therefore to the expected ballistic slope c � 1. More
surprising, and not yet fully understood, are the clearly
visible transverse crest lines, whose (equal) inverse slope
is very close to the golden mean. To check whether this
apparent arithmetical relation was not a simple coinci-
dence, we tried an alternative quasiperiodic sequence,
based on the ‘‘silver’’ mean: 1�

���
2

p
. Parallel crest lines

whose slope are simply related to the silver mean were
again found. We are then tempted to appeal to the subtle
properties of some iterated maps based on these quasi-
periodic sequences [9], displaying either periodic (in the
order of the Fibonacci sequence) or chaotic behavior
which are clearly seen in the computed quasiperiodically
rotated spin system [8]. The above Fibonacci quantum
coin sequence proves to have a simple cyclic behavior for
any value of the pair ��;��. But these crest lines also
190503-2
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FIG. 4. Typical probability distribution in the ‘‘continuous’’
random case. A ‘‘hairy’’-like Gaussian shape is found, with a
diffusive (c � 0:5) standard deviation.
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FIG. 3 (color online). Slope of the standard deviation, ��t�,
versus the parameters (�;�) for a Fibonacci sequence.
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appear if we replace the above QCO [expression (3)] by a
simple two dimensional rotation matrix, in which case
the quasiperiodically rotated spin system is not generi-
cally cyclic.

The QRW possible experimental implementation (see
below) is of high interest in the context of quasiperiodic
systems, since, in that case, the sub-ballistic behavior,
although clear from many computations, has not been yet
clearly demonstrated in experiments. Note also that the
effect of quasiperiodicity on the random walk is quite
different in the quantum case as compared to the classical
case [10]

Let us finally consider random sequences. We are still
willing to compare with tight-binding electron evolution.
In the latter case, a one-dimensional random potential is
expected to generate a (very) long time wave packet
localization, preceded, at short time, by a ballistic motion
whose range depends on the error range width. We con-
sider here two types of disordered QRW. We first generate
50=50 random sequences with two different QCOs, de-
fined by �;�=2� �. To each random sequence corre-
sponds a definite wave-function spreading, and we
therefore average over many disorder realizations to
check for an asymptotic regime. The second case under
consideration is that of a continuous set of QCOs, whose
distribution, centered on � � �=4, has variable width.
This situation is related, but not identical, to a model of
errors for an experimental implementation, which has
been considered in [11] for periodic QRW in an optical
lattice. In both cases, a diffuse regime, c � 0:5 is found,
and the probability distribution have a Gaussian-like
shape with short range structure (Fig. 4).

Experimental implementation.—We can now discuss
how the above computed behaviors could be experimen-
tally tested. There are, up to now, several experimental
proposals for the realization of the usual QRW, among
which, for example, one atom in an optical lattice [11],
trapped ions [12], systems using linear optics [13] and
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cavity quantum electrodynamics [1,14]. A continuous
time version of the algorithm performed in a circular
chain has already been realized using nuclear magnetic
resonance [15] and the difference with the classical ran-
dom walk demonstrated. The realization of the aperiodic
QRW involving biased alternating coins, represent only
limited modifications to most of these protocols, imply-
ing that there is no major difficulty to the experimental
implementation of the present aperiodic two coins se-
quences. We can study the specific example of optical
lattices and describe how the protocol of aperiodic
QRW can be implemented therein. In the proposal pre-
sented in [11], the internal states of a Rb neutral atom
(considered as a two state system) are subject to the
quantum coin. This atom is located initially at one site
of an one-dimensional lattice, and will move to one of its
neighboring site according to its internal state. The condi-
tional translation is performed in the same way as pro-
posed in [16]: different internal states feel different
optical potentials and they are kept in the ground state
of their respective potential. For the case studied in [11],
the relevant internal atomic states are the hyperfine struc-
ture states jF � 1; mf � 1i and jF � 2; mf � 2i. They
will be denoted from now on as qubits j0i and j1i. The
corresponding potential is V0�x; �� � �Vms�1=2�x; �� �
3Vms��1=2�x; ��	=4 and V1�x; �� � Vms�1=2�x; ��, where
Vms��1=2�x; �� � �jE0j

2 sin�kx� �� [16]. The angle � is
half the angle between the polarizations of the two lasers
that form the lattice and E0 is the amplitude of the
electrical field. For the specific choice of � � 0, the
minima for both hyperfine states coincide. The parameter
� can be adiabatically changed by turning one of the
lasers polarization. The potential wells corresponding to
each one of the internal states are thus translated with
respect to each other. Since the minima for both internal
states coincide again at � � �, at this point the two
190503-3
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possible internal states are present in the same position.
The ‘‘mixing’’ step, corresponding to the Hadamard gate,
is performed by a laser tuned to the frequency separating
the two atomic internal states. The application of the laser
pulse occurs when the minima for both states coincide,
and its duration determines the superposition of the two
internal states that is created. The Hamiltonian corre-
sponding to the atom-laser interaction can be written as

Ĥ int � ��j0ih1jei� � j1ih0je�i��; (4)

where � is the Rabi frequency and ei� the pulse’s phase.
The time evolution reads

j0i�t��R��;�;t�j0i� cos��t�j0i�sin��t�e�i�j1i;

j1i�t��R��;�;t�j1i� sin��t�ei�j0i�cos��t�j1i:
(5)

This generates a standard rotation operator in the spin
space. To obtain the required ‘‘coin’’ transformation C���
(3), up to a phase, we can apply R��; 0; �=��R��;
�=2; �=�2���R��; 0; �=�2��� � �iC���. Therefore, an
appropriate choice of the laser’s phase and of the pulse
duration can build all possible superpositions of the two
states.

The modifications to the usual QRW protocol suggested
in this Letter demand changing only this point of the
experimental proposal: the generalized coins create
biased superpositions of the internal states, and their
realization is possible by controlling the laser pulse du-
ration. In order to alternate two different GCO, one only
needs to alternate two different pulse durations.

Conclusion.—We have shown how the standard quan-
tum random walk framework can be considerably en-
riched by allowing more than one type of quantum coin
operator, arranged along different sequences. In particu-
lar, quasiperiodic binary sequences lead to a sub-ballistic
wave packet spreading characterized by sequence de-
pendant slopes. The quantum state evolution depends on
both the precise values taken by the two coins and the
sequence itself. Note that we have studied here the sim-
plest cases, with Fibonacci sequences and generalized
Hadamard coins. More complex evolution is expected if
the two coins are picked in a more generic set, or ar-
ranged along more complex (even not random) sequences.
We have also studied random sequences, which leads to
diffuse spreading, in contrast with the localization effect
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encountered for quantum particles subjected to disor-
dered potentials in one dimension.

A very interesting aspect of these binary quantum
random walk is their possible experimental implementa-
tion. Indeed sub-ballistic spreadings are often computed
(specially in the quasiperiodic case), but rarely observed.
We have described here the modification implied by going
from single to binary sequences, which is not in principle
very complicated.
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