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A method of phase control of entanglement in two-qubit systems is proposed. We show that by
changing a relative phase of the pulses that drive the transitions in a two-qubit system with closed-loop
couplings, one can control entanglement at will. The method relies on adiabatic dynamics via time-
delayed pulse sequences and can be implemented with both resonant and nonresonant transitions.
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One of the requirements of a quantum computer is the
entanglement of qubits in a quantum register. This goal
underneaths extensive efforts toward creating two parti-
cle entangled states in various composite quantum sys-
tems, potential candidates for quantum computation [1–
3], as well as many-particle entangled states [4–10].
Another reason for growing interest in creating entangled
states is that a subgroup of these states, the so-called spin-
squeezed states, can lead to an improvement in high-
precision measurements below the standard quantum
limit (in an ideal situation, the Heisenberg limit can be
achieved) [7].

In principle, entanglement is the most natural state in
quantum systems: any two or more quantum systems
interacting for some time become entangled. That is, the
wave function of the combined system cannot be written
as a direct product of wave functions of its constituents.
Obviously it is crucial for quantum information process-
ing to be able to create entangled states in a controllable
way. The problem of controlling entanglement is directly
connected to the problem of coherent control of popula-
tion transfer in multilevel systems. To understand this
one-to-one correspondence, one may consider a system
of two interacting 1=2 spins in a static magnetic field (two
qubits). The energy levels of the combined system form a
four-level system. As a result, the problem of controlling
entanglement is mapped onto the problem of creating
specific coherent superpositions in the four-level system.

In general, there are two distinct regimes of coherent
population transfer using transform-limited pulses: �
pulse dynamics and adiabatic passage dynamics. Both
methods can be used to create coherent superpositions
starting from a particular pure state. Any method that
prepares coherent superpositions must contain at least one
stage sensitive to the parameters of excitation. In the �
pulse regime, one creates coherent superpositions by con-
trolling the pulse area. Complete population inversion can
be achieved when the pulse area is an odd integer of �. In
the adiabatic passage regime, one usually has complete
population transfer to the target state as long as the
adiabatic condition is satisfied. Partial population transfer
can be achieved only for small values of the adiabatic
0031-9007=04=93(19)=190502(4)$22.50
parameter or, in some cases, by controlling the ratio
between different Rabi frequencies [11–13].

In this Letter we propose a method to prepare en-
tangled states by controlling the amplitude and relative
phase in the fields used to excite the quantum system in
the adiabatic regime. Essentially, we choose the relative
phase as the control knob to create the desired target
state. The suggested method opens a new avenue for
quantum control of entanglement and facilitates experi-
mental implementation of quantum logic gates.

Let us consider two interacting two-level quantum
systems. As an example, such system can be two 1=2
spin particles, two quantum dots, or two Rydberg atoms.
Such quantum systems can be described as a four-level
system in closed-loop configuration. We assume that each
transition is driven separately by radio frequency pulses
in the case of a spin system or by laser pulses for an
atomic system.

The total wave function of the combined quantum sys-
tem, j��t�i�a1�t�j00i�a2�t�j11i�b1�t�j01i�b2�t�j10i,
obeys the Schrödinger equation with the Hamiltonian in
the rotating wave approximation (RWA) of the form

H � �
1

2

0 0 �12�t� �13�t�
0 0 �24�t� �34�t�e

i	

�12�t� �24�t� 2�1 0
�13�t� �34�t�e�i	 0 2�

0
BBB@

1
CCCA;

(1)

where �ij�t� are the Rabi frequencies chosen to be real
and �1;2 are one-photon detunings. Here we explicitly
write the phase factor, e�i	, where 	 is the phase differ-
ence between Rabi frequencies. The origin of this phase
can be traced to the dipole moments or to a single phase
difference in the exciting fields [14]. We consider the case
of two-photon resonance between states j00i and j11i, and
for simplicity we choose �12�t� � �13�t� � �p�t� and
�24�t� � �34�t� � �s�t�.

It is clear from the general structure of the Hamil-
tonian that there are two possible pathways from state

j00i to state j11i: j00i ���!�12�t�
j01i ���!�24�t�

j11i and j00i ���!�13�t�

j10i ���!�34�t�
j11i. The dynamics and the role of the phase 	
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on the final outcome of the population transfer in the
closed-loop four-level system can ultimately be explained
from interference between these two channels. In fact, the
relative phase can be used as a control parameter in
almost any general n-qubit system. We note some inves-
tigation of the phase-dependent dynamics in multilevel
systems along these lines in [15–18]. We show below that
by controlling the phase 	 it is possible to create any
entangled state of the form j	i � �j00i � ei�j11i�=

���
2

p

and j�i � �j01i � ei�j10i�=
���
2

p
.

In this Letter we consider excitation by partially or half
counterintuitive (HCI) pulse sequences when �s�t� pre-
cedes �p�t� and both of them turn off simultaneously. It is
well known that such pulse sequences applied to the
three-level � system can be used to create coherent super-
positions of ground and target states [11–13,19]. Here we
demonstrate an implementation of this pulse sequence to
create entangled states.

Figure 1 shows examples of population dynamics ob-
tained by numerical solution of the Schrödinger equation
with the Hamiltonian of Eq. (1) for the resonant excita-
tion, �1;2 � 0.We have chosen pulses with sin4t and cos4t
shapes at the beginning and at the end, respectively. Using
the HCI sequence, we create entangled states j	i,
Fig. 1(a), or j�i, Fig. 1(b), depending only on the value
of the relative phase 	. In addition, we present in Fig. 1(d)
an example of state population at final time as a function
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FIG. 1 (color online). Population dynamics at 	 � 0 (a) and
	 � 0:2� (b); solid line, j00i state; dashed line, j11i state; light
solid line, j01i and j10i states (coincide). (c) The HCI pulse
sequence: �s�t�, solid line; �p�t�, solid line with circles.
(d) Populations at final time vs phase with Sp �

R
�p�t�dt �

9� and Ss �
R
�s�t�dt � 21�.
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of phase 	. The final populations imply oscillations be-
tween j	i and j�i. Therefore, using a fixed pulse se-
quence we can prepare various entangled states just by
tuning the relative phase between the pulses.

To understand the dynamics of population transfer
and the role of the phase we consider the dressed
states picture. In general, the eigenvalues of the
Hamiltonian [Eq. (1)] have the form �1;2 � 
 1

2��,

�3;4 � 
 1
2��, where �
 �

������������������������������������������������
�2

p�t� ��2
s�t� 
�2�t�

q
,

�2�t� �
��������������������������������������������������������������������������
�4

p�t� ��4
s�t� � 2 cos	�2

p�t��2
s�t�

q
. The cor-

responding formulas for dressed states, jci�t�i, are lengthy
and will be presented elsewhere.

To determine which state is involved in the dynamics,
we obtain expressions for the dressed states at particular
FIG. 2 (color online). (a) Final population of the j11i state as
a function of the Rabi frequency and phase for the HCI pulse
sequence, with relative pulse areas Sp: Ss � 3: 7. (b) Contour
plot for the final population of the entangled states, �j00i �
ei	=2j11i�=

���
2

p
(dark solid line) and �j01i � ei	=2j10i�=

���
2

p
(light

solid line), as a function of the Rabi frequency and phase for
the same HCI sequence.
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FIG. 3 (color online). Final population of the j11i state as a
function of the Rabi frequency and phase for the off-resonant
excitation by the HCI pulse sequence.
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limits. For the case of counterintuitive turn-on of the
pulses, when �s�t� precedes �p�t�, the initial state can
be found by taking the limit �p�t�=�s�t� ! 0 in the
general expressions of the dressed states. We obtain
the following equations: jc1�0�i �

:
�1=

���
2

p
; 0;�iei	=2=2;

ie�i	=2=2�, jc2�0�i�
:
�1=

���
2

p
;0;iei	=2=2;�ie�i	=2=2�,

jc3�0�i �
:
�0; 1=

���
2

p
; 1=2; e�i	=2�, jc4�0�i �

:
�0; 1=

���
2

p
;

�1=2;�e�i	=2�. Therefore, initially the system is in
the superposition of dressed states �jc1�0�i � jc2�0�i�=

���
2

p
.

To find the final state of the system using the HCI pulse
sequence we take the limit �s�t�=�p�t� ! 1. We ob-
tain jc1�1�i �

:
�e�i	=4;�ei	=4;�i; ie�i	=2�=2, jc2�1�i �

:

�e�i	=4;�ei	=4; i;�ie�i	=2�=2, jc3�1�i �
:
�e�i	=4; ei	=4;

1; e�i	=2�=2, jc4�1�i �
:
�e�i	=4; ei	=4;�1� e�i	=2�=2.

From these expressions we conclude that in the adiabatic
limit for the HCI sequence, we are able to prepare j00i �
ei	=2j11i or j01i � e�i	=2j10i, where the form and phase
of the entangled states are controlled at will. Figure 2
shows the area of parameters where we can create these
entangled states. The oscillation frequency between the
entangled states [Fig. 1(d)] depends on the dynamical
phase,

R
1
0 ���t0�dt0, which is a function of the intensity

and relative phase of the fields.
We see from Fig. 1(d) and Fig. 2 that for phases near

	 ! ��, all four states are populated and it is not
possible to create an entangled state. The reason for this
is the nonadiabatic couplings. Using the general expres-
sions for the dressed states, it can be shown that the
nonadiabatic couplings are zero except between the pairs
of dressed states jc1�t�i, jc2�t�i and jc3�t�i, jc4�t�i. These
couplings become very important for phases near 	 !
��. However, exactly at 	 � ��, it is again possible to
create entangled states of the form �j01i � j10i�=

���
2

p
[the

area of the parameters is not shown in Fig. 2(b)]. A
detailed analysis of that particular case and nonadiabatic
couplings will be presented elsewhere.

In the case of large detunings, j�1;2 � 0j, we can
adiabatically eliminate the probability amplitudes of the
states j01i and j10i from the Schrödinger equation. We
obtain the effective equation for the probability ampli-
tudes a1�t� and a2�t� with Hamiltonian

H �
�2

p�t�
�p�t��s�t�

4� �1� e�i	�
�p�t��s�t�

4� �1� ei	� �2
s �t�
2�

0
@

1
A: (2)

Here we use �1 � �2 � �. It is interesting to see that the
ac Stark shifts of the ground j00i and target j11i states are
proportional to �2

p�t� and �2
s�t�, respectively. The cou-

pling between these states depends on phase. In particu-
lar, for 	 � ��, the coupling is exactly zero. Therefore,
regardless of the field strength and two-photon resonance,
the population remains in j00i.

Using the eigenvalues of the Hamiltonian, �1;2 �

��2
p�t� ��2

s�t� 
�2�t��=4�, we obtain the following
dressed states
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jc1�t�i �
:
�
��

��t�
;�

ei	=2�s�t��p�t� cos�	=2�

��t���

�
;

jc2�t�i �
:
�
��

��t�
;
ei	=2�s�t��p�t� cos�	=2�

��t���

�
;

(3)

where �� �
���������������������������������������������������
�2�t� � ��2

s�t� ��2
p�t��

q
=

���
2

p
.

The limit �p�t�=�s�t� ! 0 gives jc1�0�i �
:
�1; 0� and

jc2�0�i �
:
�0; ei	=2�. Therefore, for counterintuitive turn

on of the pulses, the system is initially in jc1�t�i. By
taking the limit �s�t�=�p�t� ! 0, we obtain jc1�0�i �

:

�0;�ei	=2�, jc2�0�i �
:
�1; 0�, so that the system is initially

in jc2�0�i for intuitive turn-on.
The general expression for nonadiabatic couplings

in this case is very simple: UN�t� � �y
_��t���2

p�t� �
�2

s�t�� cos�	=2�=�4�t�, where �y is the Pauli matrix and
_��t� � _�p�t��s�t� ��p�t� _�s�t�. Our analysis shows

that the condition of adiabaticity is very similar to the
Stimulated Raman Adiabatic Passage (STIRAP) case
[20], so that we can neglect nonadiabatic coupling for
strong laser pulses. Assuming the adiabatic approxi-
mation, we can predict the state of the system at a final
time. The limit �s�t�=�p�t� ! 1 gives jc1�1�i �

:

�1;�ei	=2�=
���
2

p
and jc2�1�i �

:
�1; ei	=2�=

���
2

p
. This implies

that we can prepare the entangled state �j00i �
ei	=2j11i�=

���
2

p
using the HCI pulse sequence and the en-

tangled state �j00i � ei	=2j11i�=
���
2

p
using a partially or

half intuitive (HI) pulse sequence.
Numerical simulations confirm our findings from the

dressed state picture. Figure 3 shows the final popula-
tion of the j11i state as a function of phase and the area
of the �p�t� pulse. The results have been obtained for
the HCI sequence. There is a large area in the parame-
ter space where 50% of population is transferred to j11i.
This corresponds to preparing the entangled state
190502-3
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FIG. 4 (color online). (a) Population dynamics of the state
j00i (dark line) and j11i (light line) at Sp � 5�. (b) The HCI
pulse sequence: �s�t�, solid line; and �p�t�, solid line with
circles. (c) Populations at final time vs phase with Sp � 5�;
Sp: Ss � 3: 7.

VOLUME 93, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S week ending
5 NOVEMBER 2004
�j00i � ei	=2j11i�=
���
2

p
. At 	 � ��, the population is

locked in the ground state since the effective Rabi fre-
quency, �p�t��s�t��1� e�i	�=�2��, is equal to zero.
Population dynamics for the off-resonant excitation are
shown in Fig. 4. Since the effective Rabi frequency be-
comes smaller as 	 ! ��, the nonadiabatic couplings
become essential for larger values of phase, where it is
more difficult to prepare entangled states, as shown in
Fig. 4(c).

In summary, we have demonstrated the possibility of
creating entangled states by controlling the relative phase
of the external fields in a composite system of two inter-
acting two-level quantum systems. We have indicated the
direct relationship between the controlled relative phase
and the prepared phase of the entanglement. In the reso-
nant scheme, the results show an oscillatory behavior of
the populations of the entangled states as a function of the
relative phase at fixed envelopes of the Rabi frequencies,
while they are insensitive either to the phase and to the
Rabi frequencies in the off-resonant case.

Experimentally, the most challenging part of both
schemes is the turn-off stage of the pulses, when the
ratio between four Rabi frequencies should be fixed. In
fact, in the off-resonant scheme, the requirements are also
simpler to meet, since it is only necessary to make
�12�t��13�t� � �24�t��34�t� at final time. For some two
190502-4
interacting two-level systems there are clear correlations
between the pair of transitions, which simplifies the
operational setup and provides robustness of the scheme
to pulse fluctuations. With recent progress in pulse shap-
ing techniques [21], several alternatives make feasible the
experimental implementation of the schemes.

The scalability of the proposed method is an open
question that will be addressed elsewhere. We believe
that if the specific couplings of N interacting quantum
systems allows to find any closed-loop structure in the
corresponding 2N-level system, then control of the popu-
lation (read entanglement) can be achieved by controlling
a relative phase of the external fields. The simplicity of
the phase adjustment and the relative robustness of the
schemes against moderate changes of the pulse parame-
ters is an advantage of the proposed methods.
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