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We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in
cubic lattices and parabolic confining potentials. For finite hopping we determine the domain
boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary
dimension within mean-field and perturbation theory. The results are compared with a new numerical
method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the
fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-
Fermi mixtures in optical lattices.
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I. Introduction.—Mixtures of ultracold bosonic and
fermionic particles have attracted a considerable amount
of attention in recent years, to a high extent triggered by
the perspective of achieving prima facie transitions to
superfluidity in systems of neutral fermionic atoms [1].
Spectacular progress has already been achieved in the
experimental manipulation of cold atoms in optical latti-
ces with the experimental realization of the superfluid-
Mott-insulator phase transition in systems of bosonic
atoms [2], and the production of degenerate Fermi gases
[1,3]. A perspective of key interest lies in the possibility
of discovering and probing new quantum phases of matter
in the study of Bose-Fermi mixtures in optical lattices
[3–7]. In Ref. [4], the Bose-Fermi Hubbard (BFH)
Hamiltonian has been introduced and derived from the
microscopic many-body Hamiltonian, linking the experi-
mentally accessible quantities to the model parameters;
and a mean-field argument has been presented. In
Refs. [5] the phase diagram of homogeneous boson-
fermion mixtures in optical lattices has been studied in
a mean-field approach, and the existence of a complex
structure of phases of composite fermionic particles has
been conjectured. In Ref. [6] stable supersolid phases have
been predicted for homogeneous Bose-Fermi mixtures. In
Ref. [7] the task of assessing the phase diagram of the
BFH model using an exact diagonalization approach for
systems of small size is addressed, and, finally, in Ref. [8]
high-temperature superfluidity of the fermionic atoms
induced by the boson-fermion interaction has been
predicted.

The investigations in Refs. [5–8] are confined to the
homogeneous case, i.e., to the translationally invariant
BFH model. While this is a very reasonable approach to
discuss the phase diagram in the thermodynamical
limit, the actual experimental situations often involve
the use of external trapping potentials superimposed
on the optical lattice that break the translational symme-
try. This fact leads to the appearance of spatial domains of
coexisting different phases along the lattice, as recently
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studied for pure bosonic [9] and pure fermionic systems
[10]. Studies of such inhomogeneous systems are thus of
immediate relevance for the interpretation of experimen-
tal findings.

In this Letter we study the effects of an inhomogene-
ous confining potential on Mott and superfluid regions
emerging in systems of Bose-Fermi mixtures in regular
lattices at zero temperature. We show that the BFH model
is exactly solvable in the limit of very strong lattices
(vanishing bosonic and fermionic hopping), and analyze
the related structure of domains of composite particles.
We then consider the general case of finite hopping in
D-dimensional lattices, study the bulk properties of the
system in Landau theory and local density approximation
(LDA), and determine the general phase boundaries of the
different domains. We introduce a versatile method, ap-
plicable to several systems of this kind, that treats the
bosons within a Gutzwiller-type ansatz [11,12] and the
fermions exactly. This method allows us to present for the
first time the domain structure of inhomogeneous lattice
mixtures in confining potentials and the respective phase
diagrams for the homogeneous case.

The starting point of our analysis is the single-band
BFH Hamiltonian [13], which captures the essential
properties of dilute mixtures in optical lattices at zero
or very low temperatures under fairly general assump-
tions on the tunable physical parameters [4]. The grand
canonical BFH Hamiltonian reads

Ĥ � �
X
hi;ji

�JBb̂
y
i b̂j � JFf̂

y
i f̂j � h:c:� �UBF

X
i

n̂iBn̂
i
F

�UBB

X
i

n̂iB�n̂
i
B � 1� �

X
i

n̂iB ~V
i
B �

X
i

n̂iF ~V
i
F; (1)

where ~ViB � ViB ��B and ~ViF � ViF ��F. Here, b̂i and
f̂i are the on-site bosonic and fermionic annihilation
operators, respectively, whereas n̂iB � b̂yi b̂i and n̂iF �

f̂yi f̂i. Sites are associated with a cubic D-dimensional
lattice with fixed spacing, and i � �i1; :::; iD� denotes a
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FIG. 1 (color online). Distribution of integer boson and fer-
mion numbers for the case JB � JF � 0 and V0 � 0:002 for a
D-dimensional cubic lattice. This is encoded in the shading as
shown in the bar on the right hand side (number of bosons,
number of fermions) as a function of the component i1, the
chemical potential �B, and UBF. For the left (right) figure,
�F � 6�B=5 (�F � �B=5) is chosen.
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D-tuple labeling the coordinates of a site i. The symbol
hi; ji denotes summation over pairs of nearest neighbors.
The first two terms in Eq. (1) describe independent bo-
sonic and fermionic nearest-neighbor hopping with posi-
tive amplitudes JB and JF. The subsequent line represents
on-site boson-boson and boson-fermion interactions.
Finally, the first two terms of the last line incorporate
the external confining potential, which, in typical ex-
perimental situations, can be taken to be harmonic.
The origin of the lattice is chosen to be at the minimum
of the trapping potential, assumed to be equal for bosons
and fermions, so that ViB � ViF � Vi: � V0jij

2. This
Hamiltonian is a generalization to systems of bosons
and fermions of the frequently employed Bose-Hubbard
model exhibiting the Mott to superfluid phase transition
in bosonic systems [12,14,15]. Expressions linking the
model parameters to quantities that can be tuned in an
actual experimental situation, such as the depth of the
optical lattice and the atomic scattering lengths, are
provided in Ref. [4].

II. Exact solution with vanishing hopping.—A sur-
prisingly rich situation is already encountered in the
case of vanishing hopping: JB � JF � 0. In this case
the Hamiltonian Ĥ0 is simply a sum of single-site con-
tributions, and the eigenstates of the BFH model are
tensor products of number states with state vectors j i �
jn0; n1; 
 
 
ijm0; m1; 
 
 
i, where ni � 0; 1; 2; ::: and mi �
0; 1 represent the occupation number of bosons and fer-
mions at site i, respectively. For ease of notation, we
will fix the energy scale by setting UBB � 1. We
have h jĤ0j i �

P
i�n

2
i � ni�UBFnimi�Vi�ni�mi��

�Bni��Fmi� � :
P
iE�ni;mi�, where for the ground state

with state vector j 0i the occupation numbers take the
specific values 	ni � max�0; ��1��B � Vi�=2�� if
E� 	ni; 0�<E� 	ni; 1� and 	ni � max�0; ��1��B � Vi �
UBF�=2�� otherwise, whereas 	mi � 0 if E� 	ni; 0�<
E� 	ni; 1� and 	mi � 1 otherwise, where �:� denotes the
closest integer to the value in brackets. According to the
above determination, several types of composite particles
can be formed. Composites consisting of 	mi fermions and
	ni bosons are formed at site i, see Fig. 1. Connected
domains with fixed integer particle numbers are formed
and, depending on the interaction strength UBF and the
relation of the respective chemical potentials �B and �F,
the fermions distribute around the center of the trap or are
pushed outwards.

III. Finite hopping: perturbative treatment.—We now
turn to the strong coupling limit with small but finite
hopping. In a wide range of physical parameters, the
strength of the hopping for bosons and fermions are
approximately of the same value, JF � JB � :J, and we
treat the small positive parameter J as a perturbation. As
in Ref. [16], we introduce a mean-field approximation,
which amounts to a replacement b̂yi b̂j 7 ��!  iBb̂j �
b̂yi  

j
B �  jB 

i
B , the complex numbers  iB being varia-

tional parameters modeling the influence of neighboring
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atoms with the physical interpretation of a superfluid
parameter. We consider the resulting corrections to the
ground state energy, h 0jĤ0j 0i �

P
iE� 	ni; 	mi�, to second

order in J. Moreover, to study bulk properties we will
make use of the local density approximation (LDA). This
means taking for each lattice site  iB to be equal to
the corresponding values at neighboring sites. This is
well justified for a sufficiently shallow trapping poten-
tial. In this approximation, the ground state energy reads
E � h 0jĤ0j 0i �EB � EF �O�J3�, where EB �
2Jd

P
i�j 

i
Bj

2�1� Jdri��, with ri � �4 	ni � 2ci � 2�=�c2i �
1�, ci � 1� 2 	ni � Vi ��B �UBF 	mi, and d is the coor-
dination number (d � 6 in three dimensions). We are now
in the position to apply the Landau argument to deter-
mine the phase boundaries within LDA. If 1� JdriB > 0,
then the approximate energy functional is minimized
by having j iBj � 0, which corresponds to the incom-
pressible Mott situation for the bosons. In turn, for 1�
JdriB < 0 the minimization requires j iBj> 0, and the
bosons are superfluid. Exploiting this property, we can
determine the phase boundary between the hopping-
dominated and Mott regimes at each site, correspond-
ing to J � �1=�dri�. To find the boundaries for the fer-
mions, we consider that for small J and within LDA
the bosons alter the fermionic chemical potential, intro-
ducing an effective site dependent chemical potential
	�i
F � �F �UBF 	ni � Vi. At each site i we then consider

the corresponding (infinite) homogeneous problem Ĥi
F �

�J
P

hl;ji�f̂
y
l f̂j � f̂yj f̂l� � 	�i

F
P
ln̂
l
F, which is appropriate

for sufficiently shallow external potentials. This
Hamiltonian is diagonal in Fourier space, so that the
exact spectrum is given by "k � � 	�i

F �

4J
PD
��1 cos�k��; where k � �k1; :::; kD�, the lattice spac-
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ing being set to 1 without loss of generality. Therefore,
when � 	�i

F � 2dJ > 0, the ground state has no fermions
present, being obviously a Mott state. Similarly, for
� 	�i

F � 2dJ < 0 the ground state is a Mott state with
exactly one fermion at each site. Figure 2 shows the phase
regions for an inhomogeneous Bose-Fermi mixture in a
three-dimensional lattice with a weakly confining para-
bolic potential. The solid lines depict the boundaries
between Mott and hopping-dominated regions, as eval-
uated using the above approach. Not surprisingly, one
observes that at the center of the trap, where the potential
acquires its minimum, lower values of J are needed for
the transition to the hopping-dominated regime. For ap-
propriate fixed J, different spatial domains develop from
the center of the trap. Depending on the value of �B, one
observes an alternating sequence of Mott and hopping-
dominated domains. An important new feature that
emerges in inhomogeneous BFH systems differing from
the situation encountered in pure bosonic or fermionic
systems is a modulation of the phase regions due to the
boson-fermion interaction. This can be understood by
comparing the phase boundaries for the interacting mix-
ture with the noninteracting case UBF � 0. The bounda-
ries are represented as dashed lines in Fig. 2. For the
chosen parameters, the presence of the fermions in the
center of the trap is reflected by a tendency to form Mott
domains for bosons. Comparing this functional behavior
with the fermion number per site in the case of vanishing
hopping as depicted in Fig. 1 we see that the state diagram
for the bosons is modified when the fermion number per
site is exactly one. In turn, the presence of the bosons
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FIG. 2 (color online). The boundaries between Mott and
hopping-dominated regions for D � 3 (d � 6) for bosons
(left) and fermions (right), as a function of the site index i1,
and of the hopping J � JB � JF at UBF � 0:3 and �F � �B=5,
and, from top to bottom, �B � �0:7; 2; 2:4; 4; 6:8�. In each plot,
the J � 0 axis corresponds to the plots of Fig. 1. The white solid
line depicts the phase boundaries as determined in section III.
The dashed line reproduces the same plots, but for UBF � 0. In
the same diagram, the background encodes the variance of the
on-site density �iB=F � �h�n̂iB=F�

2i � hn̂iB=Fi
2�1=2 from the nu-

merical variational analysis discussed in section IV. Dark gray
corresponds to the Mott region with �iB=F � 0.
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heavily modifies the boundaries between the Mott and the
hopping-dominated domains for the fermions: the
hopping-dominated regions are pushed outwards, and
the value of the integer boson occupation number per
site in the Mott phase sets the scale of this phenomenon.

IV. Finite hopping: variational theory.—In Fig. 2 we
have also represented the variance of the on-site densities
�iB=F. They are determined using the following varia-
tional approach. We consider at each bulk site i the cor-
responding infinite homogeneous lattice Hamiltonian,
Ĥi. The minimization of h�ijĤij�ii over all state vectors
will be replaced by a minimization over state vectors
respecting the univalence superselection rule, j�ii �
j�i

Bij�
i
Fi. For the bosonic sector we introduce a

Gutzwiller-type ansatz, j�i
Bi �

Q
l
P
nl b

i
nl jnli (see, e.g.,

Refs. [11,12] and references therein), where the binl form a
probability distribution at each site l, nl � 0; 1; ::: . After
an exact discrete Fourier transformation of the fermionic
operators, f̂l �
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��1 cos�k�� ��F �UBFh�Bjn̂lBj�Bi �

Vi. Therefore, the state vector j�0
Fi �

Q
k;"ik<0â
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mizes the energy expectation value at fixed Gutzwiller
amplitudes, Eimin�b

i
0; b

i
1; 
 
 
� � EiB �

P
k;"ik<0"

i
k. To deter-

mine the ground state, we have to minimize Eimin at each
site i. Because this energy functional is not convex, the
energy landscape exhibits local minima and determining
the ground state leads to a nonconvex optimization prob-
lem. However, the problem can be solved numerically
using a simulated annealing method. The regions with
exactly vanishing local variance �iB=F identify the re-
spective Mott regions (dark gray in Fig. 2). Qualita-
tively, we obtain very similar results in the perturbative
and in the variational treatments. The perturbative find-
ings are valid for small hopping only, while the numerical
analysis relies on the Gutzwiller ansatz for bosons, which
is appropriate in high spatial dimensions (D � 3) and in
the superfluid regime [17]. For a system of harmonically
trapped bosons it has been shown that the appearance of a
Mott-insulator domain within a shell of superfluid atoms
leads to satellite peaks in the global momentum distribu-
tion [18]. This feature is accessible in experiments and
can, in particular, be used as an indication for the effect
of the fermions on the boson Mott transition.

V. Behavior at the center of the trap: bulk properties.—
For the central sites, within LDA, the inhomogeneous
case is equivalent to the homogeneous case. To interpret
the findings, we first recall the phase diagram of the
homogeneous fermionic system in the absence of bosons.
In this case the BFH model reduces to a system of spinless
190405-3
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FIG. 3 (color online). State diagram for central sites of bo-
sons (left) and fermions (right) for UBF � 0:3 and �F � �B=5.
Depicted are the phase boundaries as determined using pertur-
bation theory in LDA (solid lines) and Gutzwiller variational
theory (shading). The dashed lines correspond to boundaries
for UBF � 0, determined by the Landau argument for the
bosons, and exactly for the fermions.
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fermion system with hopping contributions only, and can
again be solved exactly by discrete Fourier transforma-
tion. The Mott states with exactly one or zero fermions
per site can be distinguished from the hopping-dominated
states, yielding a linear behavior of the phase boundary as
a function of J � JF (see section III). This is depicted in
Fig. 3 with a dashed line. Within the perturbative treat-
ment, the effect of the bosons is to give rise to an effective
fermionic chemical potential. This in turn leads to integer
discontinuous jumps in the phase boundaries. In turn, the
presence of the fermions modulates the phase diagram for
the bosons as compared to the standard mean-field phase
diagram of the pure Bose-Hubbard model. Notably, the
lobes associated to different boson numbers per site in the
Mott insulator do not necessarily touch the straight line
corresponding to J � 0. Again, we have compared these
findings with the results obtained from the numerical
analysis introduced in section IV. The general behavior
of the regions with exactly vanishing density variances is
very similar in both approaches. However, the disconti-
nuities are less pronounced within the variational ap-
proximation. This is due to the fact that in perturbation
theory the zeroth order contribution is manifestly discon-
tinuous. We have compared this behavior with the re-
sults obtained from an exact diagonalization of the
Hamiltonian for small systems, obtaining qualitatively
identical conclusions.

In conclusion, we have studied in detail the phase
structure of the ground state of trapped inhomogeneous
Bose-Fermi mixtures in cubic lattices. The inhomogene-
ity leads to domains of Mott plateaux and hopping-
dominated regions, where a complex interplay between
interacting bosons and fermions is displayed. These re-
sults will be compared with density matrix renormaliza-
tion group methods in forthcoming work. The findings
reported in the present work should provide a guideline
and should be amenable to direct testing in the upcoming
experiments [3] with trapped mixtures of bosonic and
fermionic atoms in optical lattices.
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