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We first present a method to compute the electro-optic tensor from first principles, explicitly taking
into account the electronic, ionic and piezoelectric contributions. We then study the nonlinear optic
behavior of three paradigmatic ferroelectric oxides. Our calculations reveal the dominant contribution
of the soft mode to the electro-optic coefficients in LiNbO3 and BaTiO3 and its minor role in PbTiO3.
We identify the coupling between the electric field and the polar atomic displacements along the B-O
chains as the origin of the large electro-optic response in perovskite ABO3 compounds.
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The electro-optic (EO) effect describes the change of
refractive index of a material in a static electric field and
is exploited in various technological applications [1].
Ferroelectric ABO3 compounds exhibit unusually large
EO coefficients and are therefore materials of choice for
optical devices. Since the 1970s, LiNbO3 EO modulators
have been widely used in fiber-optic transmission systems
[2]. More recently, there has been increasing interest in
epitaxially grown BaTiO3 thin films for optical wave-
guide modulators [3]. The EO effect is the origin of the
photorefractive effect, exploited in nonvolatile holo-
graphic data storage in LiNbO3 [4].

Finding better EO materials is a desirable goal.
However, the experimental characterization of optical
nonlinearities requires high-quality single crystals that
are not always directly accessible nor easy to make. Input
from accurate theoretical calculations allowing us to pre-
dict the nonlinear optical behavior of crystalline solids
would therefore be particularly useful.

For many years, theoretical investigations of nonlinear
optical phenomena were restricted to semiempirical ap-
proaches such as shell models [5] or bond-charge models
[6,7]. In the last decade, significant theoretical advances
have been reported concerning first-principles density
functional theory (DFT) calculations of the behavior of
periodic systems in an external electric field [8,9] and
opened the way to direct predictions of various optical
phenomena. Recently, particular attention has been paid
to the calculation of nonlinear optical (NLO) susceptibil-
ities and Raman cross sections [10,11].

In this Letter, we go one step further and present a
method to predict the linear EO coefficients of periodic
solids within DFT. Our method is very general, and can
be applied to paradigmatic ferroelectric oxides : LiNbO3,
BaTiO3, and PbTiO3. We find that first-principles calcu-
lations are fully predictive, and provide significant new
insights into the microscopic origin of the EO effect. In
particular, we highlight the predominent role of the soft
mode in the EO coupling of LiNbO3 and BaTiO3, in
contrast with its minor role in PbTiO3.
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At linear order, the dependence of the optical dielectric
tensor "ij on the static (or low frequency) electric-field E�
is described by the linear EO tensor rij�:

��"�1�ij �
X3

��1

rij�E�: (1)

Throughout this Letter, we follow the convention of using
Greek and Roman indexes (respectively) to label static
and optical fields (respectively). We write all vector and
tensor components in the system of Cartesian coordi-
nates defined by the principal axes of the crystal under
zero field. We also refer to the atomic displacements
��	 [� labels an atom and 	 a Cartesian direction]
within the basis defined by the zone-center transverse
optic (TO) phonon eigendisplacements um��	�: ��	 �P
m�mum��	�.
Let us first consider the clamped (zero strain) EO

tensor, r�ij�, in which all electric field induced macro-
scopic strains � are forbidden. This is achieved experi-
mentally by working at a frequency sufficiently high to
avoid strain relaxations but low compared to the fre-
quency of the TO modes. Within the Born-Oppenheimer
approximation, we express the total derivative of "ij
as the sum of two partial derivatives with respect to E�
and �m:
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The derivative in the first term of the right-hand side of
Eq. (2) is computed at clamped atomic positions. It de-
scribes the electronic contribution to the EO tensor and is
proportional to the NLO susceptibilities ��2�

ijl . The second
term represents the ionic contribution. It depends on the
first-order change of the linear dielectric susceptibility
due to atomic displacements, and is related to the Raman

susceptibility 	mij �
�����
�

p P
�	

@��1�
ij

@��	
um��	� of modem [� is

the unit cell volume], as well as to the amplitude of
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TABLE I. EO tensor (pm=V) in LiNbO3: electronic, ionic
and piezoelectric contributions, and comparison with experi-
ment, for the clamped and unclamped cases. The ionic part is
split into contributions from TO modes (!m in cm�1).

A1 modes E modes
!m r13 r33 !m r22 r51

Electronic 1.0 4.0 0.2 1.0
Ionic TO1 243 6.2 18.5 155 3.0 7.5

TO2 287 �0:2 �0:4 218 0.4 1.5
TO3 355 �0:1 0.0 264 0.6 1.3
TO4 617 2.8 4.8 330 �0:3 1.2
TO5 372 �0:2 0.4
TO6 384 �0:1 �0:2
TO7 428 0.2 0.2
TO8 585 0.7 2.1
TO9 677 0.0 0.0

Sum of ionic 8.7 22.9 4.4 13.9
Strain 0.8 0.1 3.0 13.7
Clamped Present 9.7 26.9 4.6 14.9

Exp. [20] 8.6 30.8 3.4 28
IR� R [15] 12 39 6 19

BCM [7] 25.9 20.5
Unclamped Present 10.5 27.0 7.5 28.6

Exp. [20] 10.0 32.2 6.8 32.6
Exp. [21] 9.9

VOLUME 93, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S week ending
29 OCTOBER 2004
the ionic relaxation induced by the field E�. @�m=@E� can
be expressed in terms of (i) the TO phonon mode fre-
quencies !m and (ii) the TO mode polarities pm;� �P
�;�Z

�
�;��um����, directly linked to the infrared (IR)

intensities [12]. Combining this with the previous equa-
tions, we obtain the clamped EO tensor [13]
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where ni and nj are the principal refractive indices.
Let us now consider the unclamped (zero stress) EO

tensor, r�ij�. It can be shown [13] that the macroscopic
expression proposed in Ref. [14] is still valid at the micro-
scopic level so that the piezoelectric contribution to r�ij�
can be computed from the elasto-optic coefficients pij	�
and the piezoelectric strain coefficients d�	�

r�ij� � r�ij� �
X3

	;��1

pij	�d�	�: (4)

An expression similar to Eq. (3) was previously used
by Johnston [15] to estimate the clamped EO tensor of
LiNbO3 and LiTaO3 from IR and Raman measurements.
However, this semiempirical approach was limited by the
indeterminacy of the relative sign of pm and 	m. As
discussed below, the direct evaluation of Eq. (3) and (4)
from first principles provides an easier and more accurate
estimate of the EO tensor.

We have implemented this formalism in the ABINIT

open software [16], within the local density approxima-
tion (LDA) to the DFT. The optical dielectric tensor, Born
effective charges, phonon frequencies and eigendisplace-
ments are computed from linear response [12]. The piezo-
electric strain coefficients d�	� are deduced from the
piezoelectric stress coefficients e�	� and the elastic con-
stants. These two quantities, as well as the elasto-optic
tensor pij	�, are obtained from finite differences. The
nonlinear response functions ��2�

ijl and @��1�
ij =@��	 are

computed from a perturbative approach using a new
implementation based on the 2n� 1 theorem [8,13].

For BaTiO3 and PbTiO3, we use extended norm-
conserving pseudopotentials [17], a plane wave kinetic
energy cutoff of 45 hartree and a 10� 10� 10 k-point
grid. For LiNbO3, we use the same norm-conserving
pseudopotentials as in Ref. [18] as well as the Born
effective charges, phonon frequencies and eigenvectors
already reported in that paper. For this compound, an
8� 8� 8 k-point grid and a plane wave kinetic energy
cutoff of 35 hartree give converged values for ��2�

ijl and

@��1�
ij =@��	.
First, we study LiNbO3. This compound has a trigonal

symmetry with 10 atoms per unit cell. The theoretical
lattice constants and atomic positions are reported in
Ref. [18]. LiNbO3 undergoes a single transition at
1480 K from a centrosymmetric high-T paraelectric
187401-2
R3c phase to a ferroelectric low-T R3c ground state.
The form of the EO tensor depends on the choice of the
Cartesian axes. Here, we follow the standards on piezo-
electric crystals [19].

With this choice of axes, the EO tensor in the ferro-
electric phase of LiNbO3 has four independent elements
(Voigt notations): r13, r33, r22, and r51. The TO modes
can be classified into 4A1 � 5A2 � 9E. The A1 and
E modes are Raman and IR active. Only the A1 modes
couple to r13 and r33, while the E modes are linked
to r22 and r51. Table I gives these four clamped co-
efficients [22], as well as the contribution of each opti-
cal phonon. For comparison, we mention the coeffi-
cients computed by Johnston [15] from measurements
of IR and Raman intensities (IR� R) as well as the
results of a bond-charge model (BCM) calculation by
Shih and Yariv [7]. The first-principles calculations cor-
rectly predict the sign of the four EO coefficients [19].
The absolute values are also well reproduced by our
method, especially if we take into account the fact that
NLO properties are generally difficult to determine ac-
curately. The experimental values are sensitive to external
parameters such as temperature changes [23] and the
stoichiometry of the samples. For example, using crystals
of various compositions, Abdi and co-workers measured
absolute values between 1:5 pm=V and 9:9 pm=V for r�22
[21]. These difficulties support the need for sophisticated
theoretical tools to predict NLO properties. In contrast to
the models of Refs. [7,15], our method is predictive and
does not use any experimental parameters. Moreover, it
187401-2



TABLE II. Electronic and ionic contributions of individual
TO modes (!m in cm�1) to the clamped EO tensor (pm=V) in
the P4mm phase of PbTiO3 and BaTiO3.

PbTiO3 BaTiO3

A1 modes E modes A1 modes
!m r�13 r�33 !m r�42 !m r�13 r�33

Elec. 2.1 0.5 2.2 1.0 2.1
TO1 151 3.9 2.9 79 16.4 161 1.0 1.0
TO2 357 1.4 0.7 202 10.5 300 5.7 16.3
TO3 653 1.6 1.8 269 0.2 505 1.2 2.9
TO4 484 1.2
Tot 9.0 5.9 30.5 8.9 22.3
Exp. [25] 13.8 5.9
Exp. [14] 10.2 40.6
Exp. [26] 8 28

TABLE III. Raman susceptibilities and mode polarities
(10�2 a:u:) of the A1 TO modes in LiNbO3, BaTiO3, and
PbTiO3.

LiNbO3 BaTiO3 PbTiO3

p3 	11 	33 p3 	11 	33 p3 	11 	33

TO1 3.65 �0:70 �2:02 1.22 �0:16 �0:13 1.25 �0:67 �0:43
TO2 0.45 0.30 0.53 3.25 �1:18 �2:73 2.18 �0:75 �0:33
TO3 0.67 0.18 �0:05 1.74 �1:26 �2:55 2.68 �2:42 �2:28
TO4 3.82 �1:96 �3:23
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reproduces r�13, r
�
33, and r�22 better than the semiempirical

models.
Our approach also provides some insight into the origin

of the high LiNbO3 EO response. All EO coefficients are
dominated by the ionic contribution of the A1 TO1 and the
E TO1 modes. This can be explained as follows. At the
paraelectric-ferroelectric phase transition, the unstable
A2u and Eu modes of the paraelectric phase transform
to low-frequency and highly polar modes in the ferro-
electric phase [18], generating a large EO response if they
exhibit, in addition, a large Raman susceptibility. The A1

TO1 and E TO1 modes of the ferroelectric phase have a
strong overlap of, respectively, 0.82 and 0.68 with the
unstable A2u and Eu modes of the paraelectric phase
and combine giant polarity [18] and large Raman suscep-
tibility (see below for the A1 mode).

In Table I, we also report the unclamped EO co-
efficients in LiNbO3. As the piezoelectric coefficients
d31 (�1 pC=N) and d33 (6 pC=N) are small compared
to d15 (55:9 pC=N) and d22 (21:6 pC=N), the piezo-
electric effect is important for r�22 andr�15 and negligible
for r�13 and r�33. The unclamped EO coefficient r�51 is
nearly twice as large as the clamped one. Moreover, its
theoretical value is in better agreement with the experi-
ment than that of the clamped one. This suggests that the
piezoelectric contribution was not entirely eliminated
during the measurement ofr�51; the correct value of the
clamped coefficient might be closer to the theoretical
14:9 pm=V.

Second, we study PbTiO3 and BaTiO3. Both com-
pounds are stable at room temperature in a ferroelectric
distorted perovskite structure of tetragonal P4mm sym-
metry with 5 atoms per unit cell [24]. In the P4mm
phase, the TO modes can be classified into 3A1 � 4E�
B1. The EO tensor has only three independent elements:
r13, and r33, coupling to the A1 modes, and r42, linked to
the E modes. The results are shown in Table II.

For PbTiO3, we found only measurements of r�13 and
r�33, which agree well with our theoretical results. More-
over, our calculation predicts that PbTiO3 exhibits a large
r�42, in spite of its low r�33. Combined with other advan-
tageous features, such as small thermo-optic coefficients
[27], this suggests that PbTiO3 might be an interesting
candidate for EO applications if properly oriented.

In BaTiO3, the low temperature structure is rhombohe-
dral. The P4mm phase is unstable and exhibits, in the
harmonic approximation, an unstable E mode that pre-
vents the use of Eq. (3) to compute r�42. The theoretical
estimates of r�13 and r�33 are reasonably accurate despite an
underestimation of the theoretical r�33. The origin of the
error can be attributed to various sources. First, the values
computed for the P4mm phase correspond to an extrapo-
lation of the EO tensor to 0 K, while experimental results
are obtained at room temperature. Also, linear and NLO
susceptibilities can be relatively inaccurate within the
LDA. In this context, note the use of the LDA optical
187401-3
refractive indexes in Eq. (3), overestimating the experi-
mental values by about 10%.

We compare now the NLO response of the three com-
pounds. r�13 is similar for all of them, while r�33 is signifi-
cantly smaller in PbTiO3 than in LiNbO3 and BaTiO3. In
the latter two compounds, the magnitude of r�33 is domi-
nated by one particular phonon mode. In BaTiO3, the TO2
mode at 300 cm�1 has a similar strong overlap (92%)
with the unstable mode in the paraelectric phase than the
TO1 modes in LiNbO3, as previously discussed. In
PbTiO3, all A1 modes contribute almost equally to r�33.
The TO2 mode at 357 cm�1 has the strongest overlap
(73%) with the soft mode in the cubic phase. Surpris-
ingly, its contribution to r�33 is 23.5 times smaller than the
contribution of the TO2 mode in BaTiO3.

To identify the origin of the distinctive behavior of
PbTiO3, we report in Table III the mode polarities and
Raman susceptibilities of the A1 TO modes. In the three
compounds, 	 has two independent elements 	11 and 	33

that determine the amplitude of r�13 and r�33. 	33 is large
for the TO1 mode in LiNbO3 and the TO2 mode in
BaTiO3. On the other hand, it is the smallest for the
TO2 mode in PbTiO3, in agreement with experiments
[28]. Combined with a higher frequency (!2

PbTiO3
=

!2
BaTiO3

� 1:41), a lower polarity (pBaTiO3
=pPbTiO3

�

1:49), and a larger value of the refractive index
(n4PbTiO3

=n4BaTiO3
� 1:35), this weak Raman susceptibility

(	BaTiO3
=	PbTiO3

� 8:27) explains the weak contribution
of the TO2 mode to r�33 in PbTiO3.
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TABLE IV. Decomposition of the Raman susceptibility of
the A1 TO2 mode in BaTiO3 and PbTiO3 into contributions
from the individual atoms in the unit cell [24].

BaTiO3 PbTiO3

�
�����
�

p @��1�
33

@��3
u��; 3� 	33���

�����
�

p @��1�
33

@��3
u��; 3� 	33���

(a.u.) (10�2 a:u:) (a.u.) (10�2 a:u:)

Ba/Pb 0.45 �0:014 �0:01 �1:00 �0:006 0.01
Ti �6:46 0.257 �1:66 �2:64 0.216 �0:57
O1 5.15 �0:167 �0:86 3.69 0.059 0.22
O2=O3 0.43 �0:240 �0:10 �0:02 �0:316 0.01
Tot �2:73 �0:32
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The microscopic origin of the lower A1 TO2 mode
Raman susceptibility in PbTiO3, compared to BaTiO3,
is explained by the decomposition of 	33 into contribu-
tions of the individual atoms in the unit cell (see
Table IV). In both perovskites, the major contributions
to the Raman susceptibility of the A1 TO2 modes are
	33�Ti� and 	33�O1� [24]; 	33 is mostly due to the atomic
displacements of the atoms located on the Ti–O chains
oriented along the polar direction. First, the derivatives of
��1�
33 versus atomic displacement are of opposite sign for Ti

and O1 atoms, and significantly larger in BaTiO3 than in
PbTiO3. Second, the opposing displacements of Ti and O1

atoms in the TO2 mode in BaTiO3 produce contributions
that add to yield a giant 	33. On the other hand, the in-
phase displacements of Ti and O1 in PbTiO3 produce
contributions that cancel out, giving a small 	33. This
distinct behavior goes beyond a simple mass effect.
Changing the mass of Pb to that of Ba in the dy-
namical matrix of PbTiO3 has no significant effect on
the relative Ti–O displacement. Large atomic displace-
ments of opposite direction along the Ti–O chains are
therefore needed to generate a large 	33 and potentially a
large r33.

In summary, we presented a method to compute the
EO tensor from first principles. In LiNbO3 and BaTiO3,
the large EO response originates in the giant contribu-
tion of the successor of the soft mode, which combines
low-frequency, high polarity and high Raman suscepti-
bility. In comparison, the contribution of the similar
mode in tetragonal PbTiO3 is rather weak due to its low
Raman susceptibility. In the perovskites, the Raman sus-
ceptibility is principally determined by the atomic dis-
placements along the B–O chains in the polar direction.
This suggests that the search for new perovskite oxides
with good EO properties should focus on compounds
with large relative B–O atomic displacements along the
chains.
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