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Optimal Swimming at Low Reynolds Numbers
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Efficient swimming at low Reynolds numbers is a major concern of microbots. To compare the
efficiencies of different swimmers we introduce the notion of “a swimming drag coefficient” which
allows for the ranking of swimmers. We find the optimal swimmer within a certain class of two-
dimensional swimmers using conformal mapping techniques.
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Motivation— Swimming at low Reynolds numbers is
the theory of the locomotion of small microscopic organ-
isms [1-9]. It is also relevant to the locomotion of small
robots [10]. Although microbots do not yet exist, they are
part of the grand vision of nanoscience [11-13] and it is
important to understand the physical constraints that
underline their locomotion. Microbots must swim much
faster than bacteria if they are to interface with the
macroscopic world. A micron-size robot swimming 100
times as fast as a bacterium, at the modest speed of ] mm
per second, has Reynolds number Re = pUL/u =
0(1073), and, since power scales like U?, consumes 10*
more power than a bacterium. Microbots must therefore
attempt to swim as effectively as possible, and the prob-
lem we address is how to search for effective swimming
styles.

Microscopic organisms use a variety of swimming
techniques: amoeba make large deformations of their
bodies, E. coli beat flagella, paramecia use cilliary mo-
tion, and cyanobacteria traveling surface waves [4]. One
of our aims is to formulate a criterium that can be used to
compare different swimming styles and strokes.

We show in the context of a two-dimensional model
reminiscent of amoeba swimming how one can find the
optimal swimmer in a class of swimmers. A movie of the
optimal swimmer can be viewed in [14]. Our notion of
optimality is closely related to a notion of efficiency
which has been extensively used in the locomotion of
microorganisms [1,5,10] but is more general and is appli-
cable also to swimmers whose shape changes substan-
tially during the swimming stroke. It is different from a
notion of optimality introduced by Shapere and Wilczek
[9], though the two notions become equivalent when the
amplitudes of the stroke are constrained to be small.
However, as we shall see, small strokes are never optimal.

The theoretical framework— Swimming results from a
periodic change of shape. We first need to recall [3] what is
meant by a shape and a located shape. A located shape is a
closed surface in three dimensions (or a closed curve in
two dimensions). The surface is parameterized so each
point is marked and can be identified with a specific point
of a fixed reference, see Fig. 3. A shape is an equivalence
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class of congruent located shapes that differ by trans-
lation and rotation. The space of all shapes consists of all
such equivalence classes. It is an infinite dimensional
space with a nontrivial topology. There is no a priori
metric on the space of shapes but, as we shall see, dis-
sipation can be used to define a natural metric on it.

A swimming stroke is a closed path in the space of
shapes but, in general, an open path in the space of
located shapes. We denote the latter y(r), 0 =t = 7. 7 is
the period of the stroke. When a stroke is small, the shape
of the swimmer throughout the stroke changes only a
little. Once the swimmer has completed a stroke, it is back
to its original shape except that it is translated by X(7y)
and rotated. In the problem we consider the rotation
vanishes by symmetry.

To compute the swimming step, X(7y), and the dissipa-
tion D(y) associated to the stroke 7y, one needs to solve
the (incompressible) Stokes equations for the velocity
field v of the ambient liquid:

uAv = Vp, V-v=0 (1

subject to the boundary conditions that v vanishes at
infinity and satisfies a no-slip condition on the surface
of the swimmer. The no-slip condition relates the liquid
flow v to the swimmer movement. The latter has two
parts: one comes from the rate of change of shape and
one comes from the locomotion. Using internal forces, the
swimmer directly controls only its shape. The locomotion
is determined from the requirement that at all times the
total force and torque on the swimmer vanish [3].

The two-dimensional case has certain special features
related to the Stokes paradox. Specifically, the condition
that the total force vanishes is satisfied automatically and
needs to be traded for the condition that a regular solution
of Eq. (1) satisfying the boundary conditions exists,
which only in two dimensions is not automatic.

Optimal swimming.— Optimal swimming comes from
minimizing the energy dissipated per unit swimming
distance, D(vy)/X(vy), while keeping the average speed
X(y)/7 fixed. (By swimming sufficiently slowly, one can
always make the dissipation arbitrarily small.) Since both
the dissipation per unit length, D(y)/X(y), and the ve-
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locity, X(y)/7 scale as 1/, a measure for the inefficiency
of the stroke which is invariant under scaling of 7 is

D(y)/X(y)
dauX(y)/7

The smaller 6(vy), the more efficient the swimmer. We call
8(y) the swimming drag coefficient. 5(7y) is a dimension-
less number in two dimensions and differs from the usual
drag coefficient [15] by a factor of Re. In d dimensions, §
has dimension L?"2. This means that (geometrically)
similar swimmers have the same efficiency in two dimen-
sions, while in three dimensions smaller swimmers are
more efficient.

o6 reduces to the notion of efficiency used in the studies
of flagellar locomotion [1] (up to numerical and geometric
factors). It is, however, different from a notion of opti-
mality introduced by Shapere and Wilczek [9], where the
dissipation per unit length is minimized while keeping
the stroke period, rather than the velocity, fixed.

Let |y| be the length of the stroke y in shape space
measured using some metric. When a stroke is small, both
X(y) and D(v) scale like | y|?, independently of the choice
of metric. It follows that 8(y) diverges like 1/|y|?* for
small strokes. Small strokes are therefore inefficient. This
is in contrast with the Shapere-Wilczek criterion which
determines the optimal stroke only up to an overall scale
and does not penalize small strokes.

A model swimmer with a finite dimensional shape
space.— Shapere and Wilczek [3] introduced a class of
soluble models in two dimensions with a finite dimen-
sional shape space. The swimmer we consider is the
image of the unit circle, || = 1, under a Riemann map

Z
V2gr

As { traces the unit circle, z = x + iy traces the boundary
of the (located) shape in the complex plane (see Fig. 1 for
examples). The space of located shapes is four dimen-
sional with coordinates {W, X, Y, Z}. X is naturally inter-
preted as the position of the swimmer, since {W, X, Y, Z}
and {W, 0, Y, Z} describe congruent curves that differ by

8(y) = 2

Z(§)=W§+X+§+ 3)

FIG. 1 (color online). Each point {W, Y, Z} in the cone on the
left corresponds to a two-dimensional curve that does not self-
intersect shown on the right. The colors of the shapes (right)
matches the color of the dots (left). The two ellipses correspond
to the two interior points. The six shapes with cusps correspond
to the six points on the boundary of the physical cone.

186001-2

translation by X. Similarly, {W, Y, Z} and ¢'*{W, Y, Z},
¢ € R, describe congruent closed curves that differ by a
rotation by ¢. The shape space of the model is a space of
three complex parameters defined up to a global phase.

When Z =0 and |W| # |Y]| the shape is an ellipse.
(When |W| = |Y| the ellipse degenerates to an interval.)
A symmetry argument shows that an elliptic swimmer
can turn but cannot swim. In this sense, the model with
Z # 0 is a minimal model of a swimmer.

For the sake of simplicity, we shall, from now on,
restrict {W, Y, Z} to be real. The shapes in this space are
symmetric under mirror reflection. (This follows from
(&) — X = z(£;t) — X where 7 denotes the complex
conjugate of z.) A swimmer that maintains its reflection
symmetry during the stroke cannot turn and can only
swim in the x direction. Hence, without loss, X(f) may be
taken to be real as well, and the space of shapes of Eq. (3)
with real parameters can then be identified with the
three-dimensional Euclidean space {W, Y, Z} € R’.

The solution of the model.— The stroke vy is a (parame-
terized) closed path in R3, i.e., y = {{W(1), Y(z), Z(1)]|0 =
t = 7}. It generates a flow in the fluid surrounding the
swimmer, which fills the domain corresponding to |{| =
1. The solution of the Stokes equations, Eq. (1), can then
be obtained by conformal mapping methods [3,16]:

v=f1(§)+sz§)—z(§)<£,‘((§))>, v=v,+iv, 4
with
Y Z

fl_z+\/—T§2, (5)

Y X+ v+ Xy oz 6 W
fr=X-% L+ 25+, (6

_ _J— 2 3
W— k- (5 §> {

where dot denotes time derivative. The flow vanishes at
infinity provided f,(o0) = f(c0) = 0. From Eq. (6), one
finds that this is the case provided:
Z

A W @)
This is the basic relation between the swimming (the
response), @dX, and the change in shape (the controls),
{W, Y, Z}. The notation @X stresses that X does not inte-
grate to a function of {W, Y, Z}. Geometrically, this rela-
tion is interpreted as a connection on the space of shapes
[3]. Note that A(W, Y, Z) is a homogeneous function of
degree zero.

The power P dissipated by the swimmer is calculated
by integrating the stress times the velocity on the surface
of the swimmer:

d
P=tm fof u(52)dz — pa: | (®)
0z
where p is the fluid pressure, p = —4uRef’(z). Using the

explicit solution given by Egs. (4)—(6), one obtains
186001-2
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P =4mu(W? + Y? + 72). 9)

The dissipation of a stroke is then
T, . . .
D(y) = 477,uj (W? + Y2 + Z%)dt. (10)
0

The physical cone— A physical shape does not self-
intersect. Since there are points {W,Y, Z} € R*® which
represent curves that self-intersect, e.g, Z=0, W =
*Y, we need to remove them. The physical shapes make
a cone, for if {W, Y, Z} does not self-intersect neither does
MW, Y, Z} with A > 0. The shapes associated with points
in the interior of the cone are smooth. Points on its
boundary correspond to shapes with cusplike singular-
ities (precursors of self-intersections). The boundary of
the physical cone is given by those {W, Y, Z} for which
there exists ¢ of unit modulus such that z/(¢) = 0. One
finds that the physical cone around the W axis is bounded
by two planes and a quadratic surface and is given by, see
Fig. 1,

W =Y +.2Z WY =272 — W2, (11)

Optimization and orbits in magnetic fields.—
Admissible strokes are closed paths vy that lie in the
physical cone. Consider the problem of minimizing the
dissipation, D(vy), of Eq. (10) subject to the constraint of
the fixed step size

X(y) = j( AdY. (12)
Y

This is a standard problem in variational calculus. Note
that since one may set 7 = 1 without loss, fixing the aver-
age speed is equivalent to fixing the step size X(vy). The
minimizer, y(¢), must then either follow the boundary or
solve the Euler-Lagrange equation of the functional

S,(y) = dmp f W2+ Y2+ 2)dt + g f TAYdL, (13)
0 0

where g is a Lagrange multiplier. S, can be interpreted as
the action of a nonrelativistic particle whose mass is 87 u
and whose charge is ¢ moving in three dimensions under
the action of a magnetic field with vector potential AY.
X(7y) may be interpreted as the flux of B(W, Y, Z) = V X
(AY) through the closed path 7.

The parameterized stroke () that minimizes S, has
constant velocity |y| = const. (This follows from the fact
that the flux X(vy) is independent of parametrization and
that the action of a free particle along a one-dimensional
curve is minimized at constant speed.) The dissipation is
then D(y) = 4 u @, where || is the length of the orbit,

and the drag 6(y) is simply:

5(y) = (X'(Ly')f (14)
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FIG. 2 (color online). The Big-Ben shaped surface is the
intersection of the physical cone (no self-intersection) with
the hyperboloid of shapes with fixed area. The boundary of the
domain of incompressible non-self-intersecting shapes is drawn
black. The inscribed red curve is the optimal stroke as com-
puted numerically.

Since the variational problem is for a domain with
nonsmooth boundaries, Fig. 1, one may worry if the
minimizer fails to be smooth. This is not the case. For
if y(¢) has a corner, smoothing the corner on a scale &
shortens the length |y| by O(g) while |X(y)| varies by
O(&?). In particular, it follows that the minimizer avoids
the corners of the physical cone. Moreover, whenever it
hits or leaves the boundary of the physical cone, it does
that tangentially, without corners.

Incompressible swimmers.— Incompressible swimmers
make a natural (and biologically important) class of
swimmers. In two dimensions, incompressibility implies
constant area. The area of the swimmer whose shape is
given by Eq. (3) is

%Im?fmz = 7(W? — Y2 — 72). (15)

Fixing the area of the swimmer corresponds to restricting
the stroke to a hyperboloid in shape space. We choose the
unit of area so that the area of the swimmer is . The
intersection of the constant area hyperboloid with the
cone of physical shapes is the Big-Ben shaped surface
shown in Fig. 2. Physical strokes are represented by
closed paths that lie inside this domain, and our aim is
to find the stroke that minimizes the swimming drag
3(y).

Large strokes are inefficient— The model admits
strokes that extend to arbitrarily large values of Y and
W. Since, by Eqgs. (7), (11), and (12), the total flux of B
through the Big-Ben shaped region of Fig. 2 is infinite,
the swimmer can swim arbitrarily large distances with a
single stroke. However, as we presently show, large
strokes are inefficient. The domain of physical incom-
pressible shapes for a swimmer of area 7 is contained in
the strip |Z| = 1. Since A = 0(%), for Y large, a long
excursion of order € in the Y direction contributes
O(logf) to X(y), but O(£) to |y|. Therefore, as £ — oo,
the drag coefficient 6 diverges like €/ log¥.
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FIG. 3 (color online). Snapshots of the optimal swimmer
shifted vertically for visibility. The top and bottom snapshots
are related by a (horizontal) translation. The shapes with cusps
correspond to those parts of the stroke that lie on the boundary
of the domain of simple shapes. The (red) dots are fixed
reference points in the body. When the swimmer is approxi-
mately triangular, the base of the triangle functions as an
anchor that pushes or pulls the opposite vertex.

The minimizer—Since the drag diverges for small
strokes and also for large strokes (for an incompressible
physical swimmer), the minimizer of J is a finite stroke.
It can be computed numerically using the following
procedure: since the minimizer is independent of the
period 7, one may, without loss, restrict oneself to orbits
with fixed energy, say E = 1. Pick the charge ¢ and find a
smooth and closed orbit on the hyperboloid of constant
area with (four) sections in the interior of the cone of
physical shapes and (four) sections on its boundary. There
is a unique such orbit y, for all ¢ that are small enough.
For each such orbit one computes, numerically, X(yq),
and |y,| to get 8(y,) from Eq. (14). What remains is a
minimization problem in one variable, ¢, which yields the
optimal stroke. The optimal stroke in shape space is
shown in Fig. 2 while snapshots of the corresponding
swimming motion in real space are shown in Fig. 3. For
the optimal stroke we find 8 pimar = 9-12. For the sake of
comparison with a squirming circle consider y which is a
small circle of radius r in the Y — Z plane, centered at
Y =7 =0, W = W,. One readily finds from Egs. (7) and
(14) that § = 8(W,/r)>. A squirmer that changes its shape
by 10% has r/W, = 0.1 and & = 800.

Perspective: The optimal swimmer we have found is
optimal within the class of Riemann maps of Eq. (3)
satisfying incompressibility. Enlarging the class of
Riemann maps would allow for better swimmers. It is
conceivable that there are superior swimmers that use
quite different swimming styles. The importance of the
model lies in that it demonstrates a scheme for a system-
atic search of efficient swimmers, and provides bench-
mark for & for better swimmers to beat.
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