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We demonstrate that graphite phonon dispersions have two Kohn anomalies at the �-E2g and K-A0
1

modes. The anomalies are revealed by two sharp kinks. By an exact analytic derivation, we show that
the slope of these kinks is proportional to the square of the electron-phonon coupling (EPC). Thus, we
can directly measure the EPC from the experimental dispersions. The �-E2g and K-A0

1 EPCs are
particularly large, while they are negligible for all the other modes at � and K.
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Carbon nanotubes (CNTs) are at the core of nanotech-
nology research. They are prototype one-dimensional
conductors. Metallic nanotubes are predicted to be one-
dimensional quantum wires with ballistic electron trans-
port [1]. However, high field transport measurements
show that the electron-phonon scattering by optical pho-
nons at K and � breaks down the ballistic behavior [2].
Electron-phonon coupling (EPC) is thus the fundamental
bottleneck for ballistic transport. Raman spectroscopy is
a prime characterization technique to identify CNTs in
terms of their size and electronic properties [3]. The
optical phonons at K and � are the phonons responsible
for the Raman D and G peaks in carbons [4]. The fre-
quency and the intensity of the Raman modes are deter-
mined by the EPC matrix elements [5]. The
determination of the EPCs is necessary to settle the 35-
year debate on the nature of the RamanD peak in carbons
[4–12]. Finally, although graphite phonon dispersions
have been widely studied, several contrasting theoretical
dispersions were proposed [6–10,13,14]. In particular, the
origin of the large overbending of the K-A0

1 branch is not
yet understood and is associated with an intense EPC
[4,9,10]. In principle, the electronic and vibrational prop-
erties of CNTs can be described by folding the electronic
and phonon dispersions of graphite. The determination of
the graphite EPCs is thus the crucial step in understand-
ing the properties of any carbon based material and
CNTs, in particular. It is then surprising that, despite
the vast literature on carbon materials, no experimental
determination or first principle calculations of the
graphite EPCs has been done so far, to the best of our
knowledge.

Here we show that in graphite the EPC matrix elements
at � and K can be directly extracted from the phonon
dispersions. We demonstrate two remarkable Kohn
anomalies in the phonon dispersions at � and K, by an
exact analytic derivation and accurate density functional
theory (DFT) calculations. We prove that the slope of the
anomalies is proportional to the EPC square.

A key feature of graphite is the semimetallic character
of the electronic structure. In general, the atomic vibra-
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tions are partially screened by electrons. In a metal this
screening can change rapidly for vibrations associated
with certain q points of the Brillouin zone (BZ), deter-
mined by the shape of the Fermi surface. The consequent
anomalous behavior of the phonon dispersion is called
Kohn anomaly [15]. Kohn anomalies may occur only for
q such that there are two electronic states k1 and k2 �
k1 � q both on the Fermi surface [15]. The electronic
bands dispersions of graphite are, essentially, described
by those of an isolated graphene sheet. In graphene, the
electronic gap is zero only at the two equivalent BZ points
K and K0. Since K0 � 2K, the two equivalent K points
are connected by the vector K. Thus, Kohn anomalies can
occur for q � � or q � K.

We perform calculations within the generalized gra-
dient approximation (GGA) [16], using the density func-
tional perturbation theory (DFPT) scheme [17], which
allows the exact (within DFT) computation of phonon
frequencies at any BZ point. We use the plane waves
(90 Ry cutoff) and the pseudopotential [18] approach.
The electronic levels are occupied with a finite fictitious
electronic temperature � [19]. This smears out the dis-
continuities present in the Fermi distribution for � � 0,
and the exact result is recovered for � ! 0. The experi-
mental lattice (aexp � 2:46 
A, c � 6:708 
A) is used for
graphite, while for graphene we consider both the graph-
ite aexp and the theoretical values (ath � 2:479 
A).
Graphene layers are separated by 7:4 
A of vacuum.

Figure 1 compares the measured optical branches [9]
with our calculations at � � 0:02 Ry. Phonon frequencies
are computed exactly for a series of points along the high
symmetry lines �-K and �-M and then are interpolated
with a spline. The agreement with experiments is �2%,
which is the expected accuracy of DFT-GGA. At � the
experimental dispersion is very well reproduced by the
calculations with aexp. At K the upper branch is better
described by the calculations with ath.

The most striking feature of these dispersions is the
discontinuity in the frequency derivative of the highest
optical branches (HOBs) at � and at K (E2g and A0

1

modes). Indeed, near �, �h!q � ��q� �h!� �O�q2�,
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FIG. 2 (color online). Graphene HOB around � and K as a
function of smearing. Points are calculated frequencies for ath.
Lines are guides to the eye. The red straight lines plot Eqs. (8)
and (10).FIG. 1 (color online). Upper panel: lines: phonon dispersion

of graphene (GE), calculated at the experimental and equilib-
rium lattice spacings (aexp and ath). Points: experimental data
from Ref. [9]. The red straight lines at � and K are obtained
from Eqs. (8) and (10). The two lower panels correspond to the
dotted windows in the upper panel. The points are theoretical
frequencies obtained by direct calculation. A single graphene
band corresponds to two almost degenerate graphite (GI)
bands.
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with !q being the phonon frequency of the HOB at the q
wave vector. Similarly, near K, �h!K�q0 � �Kq

0 �

�h!K �O�q02�. Such dependencies cannot be described
by a finite set of interatomic force constants, or by a set
decaying exponentially with the real-space distance. In
these cases the dynamical matrix dependence on q would
be analytic, and, because of symmetry, the highest optical
branch near � and K would have a flat slope (�� � �K �
0). Thus, a non zero �� or �K indicates a nonanalytic
behavior of the phonon dispersion, due to a polynomial
decay of the force constants in real space. This explains
why it is impossible for any of the often used few-nearest-
neighbor force constants approaches to properly describe
the HOB phonons near K and � [6–8,10,13,14]. The
graphite HOBs are almost indistinguishable from those
of graphene, Fig. 1. In particular, the nonanalytic behav-
ior at � and K is also present in graphite. At � the HOB is
doubly degenerate, consisting of in-plane antiphase E2g

movements. Near � the two modes split in a upper lon-
gitudinal optical (LO) branch and a lower transverse
optical (TO) branch. �� � 0 only for the LO.

Figure 2 plots the HOBs as a function of �, to clarify
the nature of the discontinuities. The results for � �
0:01 Ry and � � 0:02 Ry are similar, indicating that,
on the scale of the figure, the � ! 0 limit is reached.
Increasing �, the nonanalytic behavior is smoothed out.
Particularly striking is the behavior around K, where for
�> 0:20 Ry the dispersion is almost flat. Within DFPT,
the smearing � affects virtual transitions between occu-
pied and empty states, differing in energy & �. Thus, the
smoothing of Fig. 2 indicates that the HOB discontinuities
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are Kohn anomalies [15], since they are due to an anoma-
lous screening of the electrons around the Fermi energy.

We compute the EPC matrix elements to understand
why the Kohn anomalies affect only the HOBs and not
the others. For a given phonon mode at the reciprocal-
space point q, we call �Vq and �nq the derivative of the
Kohn-Sham potential and of the charge density, with
respect to a displacement along the normal coordinate
of the phonon. We define

g�k�q�i;kj � hk� q; ij�Vq
�nq�jk; ji
����������������������
�h=�2M!q�

q
; (1)

where we consider explicitly the dependence of �Vq on
�nq, as indicated by �Vq
�nq�. jk; ii is the electronic
Bloch eigenstate with wave vector k, band index i,
and eigenenergy �k;i. M is the atomic mass and g is
an energy. The dimensionless EPC is �q�2

P
k;i;j


jg�k�q�i;kjj
2���k�q;i��F����k;j��F�=��h!qNFNk�, whereP

k is a sum on Nk BZ vectors, NF is the density of states
per spin at the Fermi energy �F. In graphene the Fermi
surface is a point, NF is zero, and �q is not well defined.
Thus, we evaluate 2hg2qiF=� �h!q� � �qNF=Jq;where h. . .iF
indicates the average on the Fermi surface of jg�k�q�i;kjj

2,
and Jq � 1=Nk

P
i;j;k���k�q;i � �F����k;j � �F�. In

graphene, hg2KiF �
P�

i;j jg�2K�i;Kjj
2=4, and hg2�iF �P�

i;j jgKi;Kjj
2=4, where the sums are performed on the

two degenerate � bands at �F. For the HOBs, we obtain
hg2�iF � 0:0405 eV2, and hg2KiF � 0:0994 eV2, corre-
sponding to 2hg2qiF=� �h!q� of 0.41 and 1.23 eV at � and
K, respectively. 2hg2KiF=� �h!K� is much smaller (0.02 eV)
for the doubly degenerate 1200 cm�1 phonon at K and
zero for all the other phonons at K and at �, consistent
with the absence of Kohn anomalies for all these
branches. The EPC values for the graphene HOBs are
very large. They are comparable to the 39 K supercon-
ductor MgB2, for which �qNF=Jq � 1:6 eV [20] for each
of the two strongly-coupled E2g branches at A.
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We consider the expression of !q according to pertur-
bation theory [17] (within DFT), to understand the ab-
sence of a Kohn anomaly for the TO E2g phonon at � and
to correlate the constants �� and �K with the magnitude

of the EPC. !q �
��������������
Dq=M

q
, where Dq is the dynamical

matrix projected on the phonon normal coordinate

Dq �
4

Nk

X
k;o;e

jhk� q; ej�Vq
�nq�jk; oij2

�k;o � �k�q;e

�
Z

�n�q�r�K�r; r0��nq�r0�d3rd3r0

�
Z
n�r��2Vb�r�d3r: (2)

Here a factor of 2 accounts for spin degeneracy,
P

o;e is a
sum on occupied and empty states, n�r� is the charge
density, K�r; r0� � �2EHxc
n�=��n�r��n�r0��, EHxc
n� is
the Hartree and exchange-correlation functional, and
�2Vb is the second derivative of the bare (purely ionic)
potential. From previous considerations,

�� � �hlim
q!0

!q �!�

q
� �hlim

q!0

Dq �D�

2M!�q
; (3)

�K � �h lim
q0!0

!K�q0 �!K

q0
� �h lim

q0!0

DK�q0 �DK

2M!Kq
0

: (4)

If the dependence of Dq on q were analytic over all the
BZ, �� � �K � 0 [e.g,. Dq �D� � O�q2�]. For q � �
and K, the denominators in the sum of Eq. (2) are finite
andDq is analytic. The denominators go to zero for q � �
(when k � K or k � 2K) and for q � K (when k � K),
when o and e correspond to the � and �� bands near the
Fermi energy. Because of these singularities, the dynami-
cal matrix is nonanalytic for q � K;�, thus �� and �K
can be different from zero. To compute �q, we can replace
in Eqs. (3) and (4) the full dynamical matrix Dq with its
nonanalytic component ~Dq, which includes only the sum
of Eq. (2) restricted to the � electronic bands in an
arbitrarily small but finite circle of radius km around the
Fermi surface at the K and/or 2K points [21].

For q near �, using the definition of Eq. (1),

~D q �
8

���
3

p
M!�

�h

Z
k0<km

d2k0
jg�K�k0�q���;�K�k0��j

2

�K�k0;� � �K�k0�q;��

: (5)

Here we have used the substitution 1=Nk
P

k ����
3

p
=2

R
d2k0 (the graphene BZ area is 2=

���
3

p
); q and k

points are in units of 2�=a, a being the lattice spacing.
k0 � k�K. A factor of 2 accounts for the contribution
of the two equivalent Fermi points. For small q and k0,
the EPC matrix elements in the numerator in Eq. (5) are

jgLO=TO
�K�k0�q���;�K�k0��j

2 � hg2�iF
1� cos�'� '0��; (6)

where ' is the angle between k0 and q, and '0 is the angle
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between k0 � q and q [22]. The � or the � sign refers to
the LO and the TO modes, respectively. In graphene, the
electronic bands near the Fermi level have a conic shape.
Therefore, for small q and k0,

�K�k0;� � �K�k0�q;�� � �(k0 � (jk0 � qj; (7)

where ( � 14:1 eV is the slope of the � bands within
GGA. Replacing Eqs. (5)–(7), in Eq. (3), one obtains

�LO=TO
� �

4
���
3

p
hg2�iF
(


 lim
q!0

1

q

Z
k0<km


 d2k0

2
41� cos2'

2k0
�

1� cos�'� '0�
k0 � jk0 � qj

3
5

�
4

���
3

p
hg2�iF
(

Z 1

0
dy

Z 2�

0


 d'

2
41

2
�

y� y cos�'� '0�

y�
������������������������������������
1� y2 � 2y cos'

p
3
5;

where y � k=q, and '0 � arctan
y sin'=�1� y cos'��. The
integral is zero for the TO mode and �2=4 for the LO
mode. Thus, as expected, �TO

� � 0 and

�LO
� �

���
3

p
�2hg2�iF=( � 397cm�1: (8)

For the K point, we consider transitions from the neigh-
borhood of K to the neighborhood of 2K. The EPC
matrix elements are

jg�2K�k0�q0���;�K�k0��j
2 � hg2KiF�1� cos'00�; (9)

with '00 the angle between k0 and k0 � q0 [22].
Equation (4) becomes

�K �
2

���
3

p
hg2KiF
(

lim
q0!0

1

q0
Z
k0<km

d2k0
�
1

k0
�

1� cos'00

k0 � jk0 � q0j



:

The limit of the integral is �2=2, and therefore

�K �
���
3

p
�2hg2KiF=( � 973cm�1: (10)

The resulting linear dispersions are plotted in Figs. 1 and
2 . As expected, the phonon slopes near the discontinu-
ities are very well reproduced. Finally, we note that,
within a first-neighbors tight-binding (TB) approxima-
tion, the EPCs at � and K are not independent, since

�hg2KiF!K�=�hg
2
�iF!�� � 2: (11)

The validity of this relation is supported by our DFT
result, for which �hg2KiF!K�=�hg2�iF!�� � 2:02.

Equations (8) and (10) allow us to directly measure the
EPCs at � and K from the experimental phonon slopes.
The phonon branches around � have been measured by
several groups with close data agreement [13]. The fit for
q � 0:15 of the measurements in Fig. 1 [9], with �h!q �

�h!� � �LO
� q� *q2, gives �LO

� � 340 cm�1, and hg2�iF �
0:035 eV2 [23]. The available data around K are much
185503-3
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more scattered. However, from Eq. (11) we get hg2KiF �
0:086 eV2. These values are in excellent agreement with
our calculations and validate our results.

The EPCs near K between �� bands [24] allow the
accurate determination of the intensity and shape of the
Raman D peak. This will be the topic of future publica-
tions. Here, we remark that the A0

1 branch has the biggest
hg2KiF amongst K phonons. Thus, the D peak is due to the
highest optical branch starting from the K-A0

1 mode [4,9–
11], not to the branch starting from the K-E0 mode, as in
[5–8,12]. Also, the D peak shifts linearly with laser
excitation energy ( � 50 cm�1=eV [12]). This is at odds
with the flat slope of the K-A0

1 branch obtained by pre-
vious calculations [6–8,10,13,14]. But it is consistent with
the K-A0

1 linear dispersion we get. The D peak dispersion
reflects the slope of the Kohn anomaly at K and provides
another independent measure of the EPCs. From Ref. [5],
for q0 ! 0, the D peak dispersion is ��K=(. This
gives hg2KiF � 0:072 eV2 and, from Eq. (11), hg2�iF �
0:029 eV2. The EPCs derived in this way are a lower
limit since the experimental D peak dispersion is mea-
sured with laser excitation energies � 1 eV [12]. This
corresponds to the phonon slope at q0 � 0:035, which,
from Fig. 2, underestimates by 30% the slope at q0 � 0.
Taking this into account, the EPCs independently in-
ferred from the D peak dispersion are as well in excellent
agreement with our calculations.

Because of the reduced dimensionality, we predict even
stronger Kohn anomalies for metallic CNTs, and no
anomaly for semiconducting CNTs. This is the key to
differentiate the electrical nature of CNTs by Raman. A
softening of CNT phonons corresponding to the graphene
�-E2g mode was recently reported [14]. We expect a
stronger softening for the phonons corresponding to the
graphene K-A0

1 mode, since hg2KiF > hg2�iF.
In conclusion, we demonstrated two remarkable Kohn

anomalies in the phonon dispersions of graphite, revealed
by two kinks for the �-E2g and K-A0

1 modes. Even if
Kohn anomalies were observed in many materials [17],
graphite is the first real material where a simple analytic
description of the anomaly is possible. Indeed, we proved,
by an exact analytic derivation, that the slope of the kinks
is proportional to the ratio between the EPC matrix
elements square and the � bands slope at the Fermi
energy. As a consequence, we directly derived the EPCs
at � and K from the experimental phonon dispersions.
The values we obtain are in excellent agreement with
calculations. Finally, our hg2�iF and hg2KiF values, with
Eqs. (6) and (9), and [24], can be used to determine
the mean free path for electron scattering by optical
phonons. This gives the limit of ballistic transport in
CNTs and is of great scientific and technologic impor-
tance [2]. This calculation can be done, within the folding
model, using the Fermi golden rule, and will be reported
elsewhere.
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