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Velocity and Velocity-Difference Distributions in Burgers Turbulence
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We consider the one-dimensional Burgers equation randomly stirred at large scales by a Gaussian
short-time correlated force. Using the method of dissipative anomalies, we obtain velocity and velocity-
difference probability density functions and confirm the results with high-resolution numerical
simulations.

DOI: 10.1103/PhysRevLett.93.184503 PACS numbers: 47.27.–i, 47.40.–x, 52.35.Tc
Introduction.—The one-dimensional Burgers equation
with a random external force,

ut � uux � �uxx � f�x; t�; (1)

is a simple model of turbulence, where u�x; t� is a one-
dimensional velocity field, and � is small viscosity. The
external force is assumed to be Gaussian, with zero mean
and white-in-time covariance,

hf�x; t�f�x0; t0�i � ��x� x0���t� t0�; (2)

where ��y� should be specified. We assume that it is an
analytic function at y! 0 with the characteristic scale L;
nonanalytic forms of � have been considered as well [1].
This model has attracted considerable attention since it is
believed to be exactly solvable [1–14].

Let us introduce the characteristic function of the
N-point velocity distribution, ZN�
1; x1; . . . ;
N; xN; t� �
hexp

1u�x1; t� � � � � � 
Nu�xN; t��i. As was shown in
[2], it obeys the master equation that one derives by
differentiating this function with respect to t, and by
using Eq. (1),
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j��xi � xj�Z2 �D; (3)

where the summation over repeated indices is assumed.
The last term in Eq. (3) denotes the contribution of the

dissipative terms. Although the method of our Letter is
valid for the general case of the N-point characteristic
function, we concentrate on the case N � 2, where the
solution is easy to find. In this case, D � �h�
1ux1x1 �

2ux2x2� exp

1u�x1; t� � 
2u�x2; t��i. This term does not
vanish in the limit of infinitely large Reynolds number,
�! 0; rather, it has a finite value, because the velocity
field develops singularities, shocks, where large velocity
gradients are balanced by the small viscosity. It has been
proposed in [2] that the origin of this term is analogous
to the origin of anomalies in quantum field theories, and
it has been suggested that this term can be expressed
linearly through the Z function. Namely, the following
ansatz should be true inside any N 
 2 point correlation
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A � lim
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u�x�: (4)

The right-hand side of (4) contains the simplest linear
in e
u terms that are consistent with translation, scale,
and Galilean invariance [2,3]. The higher-derivative
terms are not allowed since they would change the struc-
ture of Eq. (3) and may lead to additional, nonphysi-
cal solutions. The parameters a and b, which we call
‘‘anomalies,’’ should be found from the requirement that
the stationary solution of Eq. (3) correspond to a posi-
tive, finite, and normalizable probability density funct-
ion (PDF), similar to the eigenvalue problem in quan-
tum mechanics. The other condition is nonpositivity of
the dissipation, D � 0. These two conditions restrict the
values of the anomalies considerably. It has been shown in
[3] that the admissible solution exists for a one-parameter
family fb; a�b�g, where 3=4 � b � 1 and the correspond-
ing interval for the a anomaly is 0 
 a 
 �0:45.

The corresponding scale-invariant solution for the
velocity-difference PDF, w��u=y�, where �u � u�x1� �
u�x2� � urms and y � x1 � x2 � L can be found from
(3). It has a peculiar structure that was first qualitatively
established in numerical simulations [1] and was con-
firmed by a variety of analytical methods [2–7]. It decays
hyperexponentially fast for the large positive argument,
w�z� / exp��z3=3�, and has an algebraic tail for the large
negative argument, w�z� / jzj�2b�1 (see Sec. II). This
behavior is understood since due to the nonlinear term
in Eq. (1), positive gradients decrease in the course of
time, while negative gradients become stronger. There-
fore, large negative velocity gradients are more probable
than large positive ones.

According to the allowed values of the anomaly b in
model (4), the distribution density should decay slower
than jzj�3 for z! �1. However, the geometric consider-
ation of preshock events producing large negative velocity
gradients, proposed in [7,8], suggested the asymptotic
jzj�7=2. Lagrangian simulations of only the left tail of
the PDF agreed with the latter result [12–14].
2004 The American Physical Society 184503-1
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So far, no analytical derivation of the full velocity-
difference PDF decaying as jzj�7=2 was available. The
direct numerical simulations of Eq. (1), carried out in
[9,10], have not convincingly reproduced such a PDF
either. The form of the PDF has therefore remained a
subject of controversy.

In this Letter we propose that the PDF is not unique. In
an infinite system, where the Galilean invariance holds,
the anomaly has the form (4). In the finite-size systems,
investigated in [12–14], the global Galilean invariance is
broken and the weak Galilean principle should be applied.
In this case the form of the anomaly is different from (4),
and the solution with the asymptotics jzj�7=2 may be
allowed. We derive the corresponding velocity and
velocity-difference PDFs. Next, we conduct extensive
numerical simulations of Eq. (1), using a high-resolution
shock capturing scheme. The results agree well with our
analytical prediction. Section II presents the theory, while
Sec. III the numerical simulations.

Velocity and velocity-difference PDFs.—The resolution
of the controversy mentioned above is based on the fact
that the form (4) of the anomaly is dictated by the strong
form of the Galilean principle (see below) while the
arguments of [7,8] as well as numerical results [12–14]
are correct only when the weak G principle applies. The
strong Galilean principle is the requirement that in the
infinite system, taking velocity to zero at infinity does not
break the Galilean symmetry in the middle. This require-
ment is analogous to the absence of the spontaneous
symmetry breaking in magnetic systems. For the systems
considered in [7,8,12–14] this strong G principle obvi-
ously does not hold. The reason is that the size of the
systems is of the same order as the correlation length of
the force. Therefore, the velocities in the middle of the
system are correlated to those at the boundary. The same
argument works for the periodic case, in which the
Galilean symmetry is broken by the condition
u0 �

R
udx � 0.

So, the results in [2,7,8,12–14] refer to the different
dynamical systems and that explains the discrepancy. The
natural question is whether we can apply the methods of
[2] for the case in which the strong G symmetry is broken.
This is important because the method of dissipative
anomalies is the only known nonperturbative way to
solve Burgers turbulence. In this case we still have the
weak G symmetry, which says that all correlation func-
tions are G symmetric, provided that we average them
over u0. This is of course always true, but how do we
impose this condition?

Let us notice that the correlation functions calculated
at the fixed u0 have the property

he
P


ju�xj;t�iu0 � eu0
P


jhe
P


ju�xj;t�i0: (5)

Hence, if we integrate over u0 the correlations must have
the form
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The master Eq. (3) must allow this ansatz; namely, the
proportionality to the ��

P

j� must be consistent with the

equation. This is obviously so with the anomaly (4), but
this also allows a more general form of the anomaly. Let
us look at the expression

~A � A� c

@
@


e
u; (7)

it adds the term ~D � c
P

j@Z=@
j to the right-hand side

of Eq. (3). When Z � ��
P

j�Z0, we have ~D �

c�
P

j@Z0=@
j � Z0���

P

j�, where we used the identity

x�0�x� � ���x�. It is important to notice that any other
function of 
 or higher power of @=@
 would break the
ansatz. Anomalies of the form (7) have been considered in
relation to incompressible turbulence by Yakhot [15].

The restrictions on the coefficients a, b, and c can be
obtained from the equation for the velocity-difference
PDF. To write this equation, substitute the dissipative
term (7) into Eq. (3). In the Galilean-invariant limit,
the statistics of velocity differences are separated from
those of the mean velocity field. Let us change the vari-
ables, 
1 � ���, 
2 � ���, x1 � X� y=2, and
x2 � X� y=2 and assume that � � � and y� L. The
latter condition allows us to expand ��y� ’ �0 � �2y

2=2.
In this limit, the master Eq. (3) becomes
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� aZ2; (8)

where we consider the stationary case, @tZ2 � 0. In the
finite-size system with u0 � 0, we assume the weak
G symmetry and look for the solution in the form Z2 �
Z����Z���; y�. [The strong G symmetry would imply
Z���� � ���� and the solution might be different.]
Substituting this into Eq. (8) we get the following set of
equations for the characteristic functions Z� and Z�:

�2�2�0Z� � c�
@Z�

@�
; (9)
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The solution of Eq. (9) corresponds to a positive and
normalizable PDF only when c < 0, and the solution is a
Gaussian. Its Laplace transform then gives the velocity
probability density function

P�U� �

���������
�c
��0

s
exp

�
cU2

�0

�
; (11)

where U � 
u�x1� � u�x2��=2. Since the point separation
is much smaller than the force correlation length, P�U�
184503-2
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FIG. 1. Numerical and analytical one-point PDFs for two
runs, n � 5 and n � 10. The broader curves correspond to
the run n � 10. The plot is in log-lin scale.
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FIG. 2. Velocity-gradient PDF for the run n � 5. The ana-
lytical curves correspond to the solution of Eq. (14) with b �
1:19 (dashed line) and b � 5=4 (dotted line). In both cases, ~c �
�0:3. The plot is in log-lin scale.
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becomes the one-point probability density function of the
velocity field. Strictly speaking, expression (11) is phe-
nomenological; it is expected to match the velocity PDF
only in the region U � Urms. For larger U the velocity
PDF may be not universal.We compare this result with the
simulations in Sec. III.

Equation (10) is more complicated, but it can be sim-
plified if we are looking for the solution in the scale-
invariant form, Z���; y� � ��x�, where x � �y,

x�00 � �1� 2b��0 �
�2

2
x2� � a�� cx

@
@x

�: (12)

To rewrite this equation in the velocity space, let us
Laplace transform the � function,

��x� �
Z �1

�1
w�~z� exp�x~z�d~z: (13)

The function w�~z� is then related to the velocity-
difference probability density function, W��u; y�, as
W��u; y� � w��u=y�=y. The equation for w is readily
obtained by substituting (13) into (12). Introducing the
dimensionless variable z � ~z��2=2�

�1=3, we thus get

w00 � z2w0 � �1� 2b�zw � �~aw� ~c�zw�0; (14)

where the derivatives are with respect to z, and ~a �

a��2=2�
�1=3 and ~c � c��2=2�

�1=3. Asymptotics of the
solution at jzj ! 1 can be found from Eq. (14),

w� z�2b�1� exp��z3=3� ~cz2=2�; z! �1; (15)

w� jzj��2b�1�; z! �1; (16)

they have the form that we already discussed in the
introduction.

Ideally, we should be able to derive all the anomalies a,
b, and c from our theory. At present we are not able to do
this, so in the next section we turn to numerical
simulations.

In general, the anomalies a, b, and c should satisfy the
requirement that Eq. (14) have a positive and a normal-
izable solution and that the dissipation is nonpositive,
~aw� 2�b� 1�zw� ~c�zw�0 � 0 [3]. This eigenvalue prob-
lem thus has a two-parameter family of solutions.

Note that the geometric approach of [7,8,11–14] pro-
posed the asymptotic for negative velocity differences,
w� jzj�7=2. This condition is satisfied by b � 5=4. This
value was not allowed by the condition of nonpositivity of
the dissipation in the theory based on (4), but with the
new expression for the anomaly (7) this value is admis-
sible. For b � 5=4, Eq. (14) can be solved numerically,
leading to the approximate window of acceptable values,
�0:37 � ~c � �0:025, which turns out to be consistent
with (11). We now find the values of the anomalies from
numerical simulations of Eq. (1).

Numerical results.—We perform numerical simulations
of Eq. (1) in a periodic interval of length L � 1 contain-
ing 106 grid points. The used numerical scheme is the
184503-3
standard shock capturing, total variation diminishing
(TVD) scheme with nonlinear, limited solution recon-
struction [16]. For nonlinear, scalar equations the scheme
is provably TV stable, monotonicity preserving, and
second-order accurate in the Lp, p <1, norm. To resolve
discontinuous solutions the scheme uses nonlinear nu-
merical viscosity that appears only inside the shocks.
This dissipation mechanism ensures that the shocks are
restricted to two to three grid points. The external force is
generated as

f�x� �
Xm
k�1

A�k�
&k sin�2�kx� � 'k cos�2�kx��; (17)

where &k and 'k are independent Gaussian random vari-
ables with mean 0 and covariance 1. The amplitude of the
force is A�k� � k
exp��k2=n2�=)�1=2, where ) is the force
renewal time; in our simulations we had ) � 10�5, while
184503-3
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FIG. 3. The left tails of the velocity-gradient PDF (lower
curve) and of the velocity-difference PDF (upper curve, point
separation �x � 10�3). For the reader’s orientation, the
straight line has the slope �3:4.
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the integration time step was t0 � 10�7. We used m � 10
and performed a series of runs for n � 5; 10. In this
Letter we mainly present the results averaged over five
independent runs with n � 5, and with the integration
time t � 2 each.

We found that the one-point PDF can be best matched
by the solution of Eq. (11), with the choice ~c � �0:3.
Formula (11) gives

P�U� �

�����������������
0:3�1=32

21=3��0

vuut exp
�
�

0:3�1=32

21=3�0

U2

�
; (18)

and Fig. 1 shows its good agreement with the simulations
for both n � 5 and n � 10. As expected, the best agree-
ment is seen in the top parts of the curves; the tails of the
PDF seem to be nonuniversal.

Once the c anomaly is given, we find the anomaly b by
matching the numerically obtained velocity-difference
PDF with the solution of Eq. (14); see Figs. 2 and 3. The
best match to the whole PDF is given by b � 1:19 which is
slightly less than the value b � 5=4, predicted in [7,8,11–
14], and leads to the left-tail exponent �3:38. The solu-
tion of Eq. (14) with the value b � 5=4 is less consistent
with our simulations. Although the reason for this dis-
crepancy is quite intriguing and is not clear to us, our
numerical resolution is not high enough to distinguish
between the two asymptotics, �3:5 and �3:38. Therefore,
more extensive numerical work is required to understand
this difference.

Once the anomalies c and b are found, the a anomaly is
obtained from the eigenvalue problem (14), which gives
~a � �0:65.

Conclusions.—We have found that our analytical model
(14) with parameters ~a � �0:65, b � 1:19, and ~c � �0:3
provides an excellent fit to the numerically obtained
184503-4
velocity and velocity-difference PDFs of Burgers turbu-
lence. For an important numerical check, one can directly
find the form of the anomalies by numerically construct-
ing conditional probabilities of shock amplitudes for
given velocity gradients on the left and on the right of
the shock [8]. We plan to address this question in the
future with more extensive simulations.

We also believe that the method of dissipative anoma-
lies can be generalized for turbulence with pressure and
can be applicable in more than one dimension. We cur-
rently conduct the corresponding simulations; the results
will be reported elsewhere. Practically, the Burgers model
is expected to work for strongly compressible flows, i.e.,
in astrophysical application, such as supersonic turbu-
lence in cold molecular clouds [17,18].
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Laws (Birkhäuser Verlag, Basel, 1992).
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