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Using a mesoscale model for hydrodynamics, we simulate driven flow of AB binary fluids past
surfaces that contain well-defined roughness or asperities. The geometry and wetting properties of the
asperities are found to have a dramatic effect on the flow patterns. We isolate conditions where the A
fluid forms vertical bands that bridge the asperities and an imposed shear (or pressure gradient) drives
the system to form monodisperse droplets of A within the B fluid. The size of the droplets can be
tailored by varying the morphology of the asperities. The surfaces needed to create this rich dynamical
behavior are used as the stamps in microcontact printing; thus, the parameter space can readily be
accessed experimentally, and the predictions suggest an efficient method for forming emulsions with
well-controlled morphologies.
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FIG. 1 (color online). Formation of droplets from a regular
array of bands under shear.
From optimizing the processing of polymeric materials
to controlling blood flow in natural or synthetic channels,
it is vital to understand the dynamic behavior of complex
fluids in confined geometries. Developing such an under-
standing is complicated by the fact that in the systems of
interest, the confining walls can display chemical or
physical heterogeneities and the fluid usually contains
multiple components. Furthermore, this multicomponent
mixture is driven by an imposed flow (which transports
the fluid through the processing chambers or the blood
vessels). In such systems, the fluid-wall, fluid-fluid, and
fluid-flow interactions can all affect the phase behavior
and morphology of the confined mixture.While research-
ers have recently examined how chemical variations on
the confining walls affect the flow patterns of driven
complex fluids [1], there have been few studies on the
effect of surface roughness on such systems. Using a
computational model, we undertake the first study of a
binary phase-separating fluid that is driven to flow past
surfaces which contain well-defined roughness or asper-
ities. We focus on binary, immiscible fluids since this is
the simplest multicomponent mixture that can display
distinct pattern formation in response to the presence of
the asperities. As we show below, the relative size and
shape of the asperities has a dramatic effect on the flow
patterns, dictating whether or not the system reaches a
steady-state morphology or displays periodic structure
formation within the confined mixture. In the former
case, the AB mixture forms monodisperse droplets of A
within the B phase; such emulsions are crucial constitu-
ents in the pharmaceutical, food, and cosmetic industries
[2]. What sets the proposed method apart from other
techniques for creating these mixtures [2,3] is that the
droplet size is controlled by the surface morphology and
chemistry, which can be readily manipulated by standard
microcontact printing methods. In fact, the necessary
surfaces are the ‘‘stamps’’ in this process. Hence, the
0031-9007=04=93(18)=184501(4)$22.50 
findings suggest a means of forming monodisperse drop-
lets of a variety of chemical components and range of
sizes through a relatively facile process.

Before discussing the methodology for modeling the
confined fluids, we lay out the principles that control the
novel behavior of the system. Initially, the A-like bands lie
perpendicular to the walls and bridge the narrow gap
between the square asperities [Fig. 1(a)]. The height of
the gap is given by H, the width of the asperities (and
bands) is W, and the distance between the asperities is G.
Because of the imposed shear, the bands are stretched
[Fig. 1(b)] and eventually break off when the contact
between the bands and surfaces occurs only at points on
the corners of the asperities [Fig. 1(c)]. Earlier detach-
ment would involve forming additional A=B interfaces
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near the surfaces and thus, is energetically unfavorable.
After a short transient state [Fig. 1(d) and 1(e)], each band
transforms into a single droplet in the center of the gap in
order to minimize its surface area [Fig. 1(f)].

Figure 2 illustrates how the surface morphology and
the ratio between the initial bandwidth, W, and gap
height, H, affects this dynamical behavior. The figure
shows snapshots of the system for three different ratios,
W=H � 1=4, 1=2, and 1, for square asperities that are
separated by a distance equal to the bandwidth, i.e., G �
W. Distinctly different behavior can be seen for the
different ratios W=H. Below a critical ratio, the system
evolves to a final steady state, with a single band of A in
the center of the gap for W=H � 1=4 [Fig. 2(a)], or an
array of A droplets forW=H � 1=2 [Fig. 2(b)]. Above the
critical ratio, the bands break up and recombine in a
periodic manner [Fig. 2(c)]. In the two-dimensional sys-
tem studied here, this behavior can be qualitatively under-
stood through simple arguments involving the interfacial
length. These arguments are formulated for neutral wet-
ting conditions on the asperities; i.e., the free energy
contribution from the fluid-wall interactions is the same
for the A and B fluids. Thus, differences in the total free
energy for the cases described below are solely due to the
contribution of the A=B interfaces. The radius R of the
droplets can be found by setting the area of each droplet
equal to the initial area of one band [see Fig. 1(a)], hence
FIG. 2 (color online). Dynamic behavior of a regular array of
bands, which bridge a narrow gap between square asperities on
two parallel walls, for different ratios of the initial bandwidth
W and the gap height H. The initial configuration was similar
to that in Fig. 1(a). The system reached a final steady state for
(a) W=H � 1=4 and (b) W=H � 1=2. For (c) W=H � 1, the
system evolved to a state where bands break up and recombine
in a periodic manner.
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p
. The droplet’s interfacial length is then

2H
���������������
�W=H

p
, while the interfacial length of the bands is

2H. Thus, forW=H > 1=�, it is energetically more favor-
able for the A fluid to form bands [4]. Consequently, when
such bands are snapped off, there is an energetic driving
force for them to reattach, causing the cycle to repeat
itself (as is the case for W=H � 1 in Fig. 2(c)]. Similarly,
by comparing the length of the appropriate horizontal
segment, �2G� 2H�, with the circumference of the drop-
let, we find that it is energetically favorable to form a
continuous, horizontal A band in the center of the gap
when �W �G�=H <

���������������
�W=H

p
(as is the case for W=H �

1=4 and G � W in Fig. 2(a)]. Note that the interfacial
length of the center band grows with increasing G,
whereas that of the droplet is independent of G.
Therefore, coalescence can be prevented by placing the
asperities sufficiently far apart, as can be seen by compar-
ing Figs. 2(a) and 2(b). The above arguments are based on
thermodynamics; however, the case of W=H � 1=2 and
G � W [see Fig. 2(b)] highlights the important interplay
between thermodynamics and kinetics in controlling the
structure of the system. It is actually energetically more
favorable in this case to form either bands between the
asperities or a single band in the center of the gap. Yet,
once the droplets have been dynamically formed, the
system stays trapped in a local free energy minimum
because the energy barrier for the droplets to coalesce
or reattach is too high.

To capture this complex behavior, we use a lattice
Boltzmann model (LBM) for binary fluids [5]. This is a
computationally efficient method for solving the coupled
Navier-Stokes and convection-diffusion equations that
describe the system. While this technique has been used
to model mixtures under shear [6,7], this is the first
extension of the method to sheared fluids that are con-
fined between rough surfaces. In the LBM, the distribu-
tion functions n����r; ci; t� describe the mass density of
fluid particles of component � at a lattice node r with a
velocity ci at time t. The state of our system is charac-
terized by the mass density distribution, �i�r; t� �
n�1��r; ci; t� � n�2��r; ci; t�, and the difference, �i�r; t� �
n�1��r; ci; t� � n�2��r; ci; t�. The ‘‘9-speed model,’’ which
includes the zero-velocity case (rest particles), is used to
model the movement of particles along vectors that con-
nect nearest and next-nearest neighbors on a square lat-
tice. The conserved quantities, mass density ��r; t�,
momentum density j�r; t�, and order parameter ��r; t�,
are moments of the distribution functions; ��r; t� �P
i�i�r; t�, j�r; t� �

P
ici�i�r; t�, and ��r; t� �

P
i�i�r; t�.

Here, j�r; t� � ��r; t�u�r; t�, and u�r; t� is the macroscopic
fluid velocity; the summations run over the discrete set of
velocities fcig.

The time evolutions of �i�r; t� and�i�r; t� are governed
by the single relaxation-time lattice Boltzmann equations
[8,9], �i�r� ci; t� 1� � �i�r; t�� 	�i�r; t���eq

i �r; t�
=��,
and an equivalent one for �i�r; t�. Here, �eq

i �r; t� and
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FIG. 3 (color online). Formation of bands through nucleated
growth from an initially homogeneous mixture (light gray).
The tops of the asperities slightly favor one component (gray),
while the pockets selectively wet the other component (dark
gray).
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�eq
i �r; t� are the equilibrium distributions, which are con-

structed to conserve mass density, momentum density,
and order parameter, and such that

P
icici�

eq
i �r; t� � P�

�uu, and
P
icici�

eq
i �r; t� � ���1��uu [5]. Here, � is

a coefficient related to the mobility, M � ��2�� � 1�=2,
and P and �� are the pressure tensor and the chemical
potential difference between the two species, respec-
tively. The latter quantities are obtained from the free
energy functional, which is

F �
Z
dr
�
 �

�
2
jr�j2

�
; (1)

with the free energy density defined as  � 1
3� ln��

a
2�

2 � b
4�

4 [10]. The term 1
3� ln� does not affect the

phase behavior, but is required in the LBM to enforce
incompressibility to within acceptable numerical toleran-
ces [10]. The remaining terms correspond to the usual
Ginzburg-Landau free energy for a binary fluid (e.g.,
[11]). The parameters a, b, and � determine the interfacial

tension, � �
���������������������
8�a3=9b2

p
, and interface width, � 


5
�����������
�=2a

p
. While b and � must be positive, a can be either

negative (for a homogeneous state) or positive (for two
coexisting phases). For our immiscible mixtures, a �
b > 0, and the equilibrium values of the order parameters
for two phases are �0 � �

���������
a=b

p
� �1.

In these simulations, the mean density h�i is set to
unity and the ratio �=a � 0:64, giving � 
 3, which is
the minimum acceptable value to obtain an accurately
isotropic surface tension [10]. We selected �� � 1, giving
M � �=2, and then controlled the mobility through �.
The remaining parameters were selected to ensure that
the algorithm was stable, that inertial effects were small
compared to viscous forces and surface tension, and that
the diffusion was sufficiently rapid for the interfaces to
relax to local equilibrium on a time scale that is fast
compared to their translational motion. We used � �
0:04, � � 2, and �� � 1, giving � � ��2�� � 1�=6 �

1=6; H � 128 in Fig. 2 and H � 64 in all other simula-
tions. The relative velocity between both walls in Figs. 1
and 2 was 0:02.

The LBM must be modified to incorporate the no-slip
boundary conditions imposed on the fluid by the solid
phase. We used the link bounce-back method [12], in
which the solid-fluid interface is represented by boundary
nodes that lie midway between each solid and fluid node.
It is straightforward to implement, even for arbitrarily
complex surfaces, and gives stick boundary conditions for
simple shear flow between planar interfaces.

Our mechanism for obtaining monodisperse droplets
involves a special initial configuration, where bands of A
are formed within the B phase and bridge the asperities.
This configuration can be obtained by quenching an
initially homogeneous mixture of the two components.
Below the critical temperature, the homogeneous mixture
is unstable against all fluctuations in the region where
184501-3
�2F=��2 < 0, with the free energy functional F defined
in Eq. (1). Inside this so-called spinodal region, the
mixed phase separates into domains where the order
parameter takes on its equilibrium values ��0. Outside
the spinodal region, the system is metastable and a finite
fluctuation or a nucleation site is needed to grow domains.
Hence, there are basically two mechanisms to form bands
through quenching. Which of these two applies depends
on h�i, the initial value of the order parameter in the
homogeneous mixture. For a bulk mixture characterized
by the free energy in Eq. (1), the border of the spinodal
region is given by ��s, with �s �

�����������
a=3b

p
(a; b > 0),

while �0 �
���������
a=b

p
. So for jh�ij<�s, the mixture under-

goes spinodal decomposition, while for �s < jh�ij<�0,
this system exhibits nucleated growth.

For two arbitrary immiscible fluids, the formation of
bands through spinodal decomposition is problematic
since random fluctuations in the initial composition easily
lead to a highly nonuniform morphology. However, the
required uniform bands can be formed through nucleated
growth by exploiting a selective wetting pattern at the
walls [13]. In particular, small domains of a single com-
ponent can be nucleated at specific wall areas by using
patches that slightly favor only that component. Specific
wetting conditions are accounted for by adding a surface
free energy density  s to F in Eq. (1) such that F0 �
F�

R
 sdS. Functional minimization of F0 requires

 s � ���n � r��, evaluated at the wall, with n being
the surface normal pointing into the fluid [14]. These
wetting conditions are implemented in the LBM by en-
forcing a nonzero gradient of the order parameter at the
walls. The static contact angle at the wall in the absence of
flow is then cos" � 1

2 	�1� h�3=2 � �1� h�3=2
, with

h � �n � r��
�����������
2�=a

p
.

The nucleation process is illustrated in Fig. 3 for a
system having a geometry similar to that in Fig. 1. The
tops of the asperities slightly favor one component, just
184501-3
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FIG. 4 (color online). Formation of droplets from a regular
array of bands under pressure driven flow. The initial configu-
ration is identical to that of Fig. 3(d), the applied pressure
gradient is 2� 10�5
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enough to initiate nucleation, while the pockets between
the asperities selectively wet the second component. This
particular geometry and wetting pattern can readily be
fabricated through standard microcontact printing meth-
ods [15]. The initial value of the order parameter is
chosen such that (i) it lies inside the nucleation region,
and (ii) there is enough of the minority component to
form bands that bridge the gap between the asperities.
Bands of equal volume are then formed if the mixture
before quenching is sufficiently uniform and if the asper-
ities are placed equal distances apart.

While absent in two dimensions, the Rayleigh insta-
bility can cause planar sheets and cylindrical domains to
break up into droplets in three dimensions. The same
instability can cause droplets once formed to break up
into smaller ones under the influence of a shear flow [16].
This breakup process is controlled by the capillary num-
ber, Ca � � _$R=�, characterizing the relative importance
of shear stress and surface tension. Here,� is the viscosity
of the B phase, _$ is the applied shear rate,� is the surface
tension, and R is the radius of the A droplets. Hence, in
experiments and in three-dimensional simulations, Ca
must be � 1 to ensure the formation of stable droplets.

The most relevant dimensionless numbers that charac-
terize the shear flow are the capillary number, as defined
above, and the Reynolds number, based on the shear rate
and droplet radius, Re � � _$R2=�. For a typical binary
fluid, � � 0:01 Nm�1, � � 0:05 Pa s, and � �
1000 kgm�3. Hence, R � Re=400 for Ca � 0:1. For
stability reasons, the maximum wall velocity in the
LBM units is about 0.1, while the range of viscosities is
from 0.01 up to about 10. Thus, for a typical simulation
with R � 64, H � 128, Ca � 0:1, and the same free
energy parameters as used above (� � 0:04, �=a �
0:64, and a � b), we can simulate a range of Reynolds
numbers between 0.003 and 30. This corresponds to drop-
lets with a radius between 7:5 �m and 75 mm. The
corresponding values of W and G would also be of the
same order.
184501-4
Although droplet formation in a shear cell is experi-
mentally quite feasible, it might be preferable to have a
fixed geometry and form droplets by applying a pressure
gradient along the gap. We can tune the pressure gradient
such that the bands snap off at the wall, without com-
promising the integrity of the band itself. Hence, under
the correct conditions, as illustrated in Fig. 4, droplets
can just as readily be obtained through an imposed pres-
sure gradient as through a steady shear.

In three dimensions, the appropriate confining walls
would contain regularly spaced cubic or cylindrical as-
perities [17]. Such surfaces can be fabricated in the mi-
cron to mm range [15], thus permitting significant control
over the size scale of the droplets. This has important
technological implications for creating well-defined
emulsions. On a more fundamental level, these findings
uncover a rich phase behavior that emerges when multi-
component fluids are driven to flow over surfaces that
contain both chemical and physical heterogeneities.
These studies are vital to enhancing our understanding
of such disparate processes as blood flow in arteries to
polymer processing in reaction chambers.
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