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Phantom Energy Mediates a Long-Range Repulsive Force
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Scalar field models with nonstandard kinetic terms have been proposed in the context of k inflation,
of Born-Infeld Lagrangians, of phantom energy and, more in general, of low-energy string theory. In
general, scalar fields are expected to couple to matter inducing a new interaction. In this Letter I derive
the cosmological perturbation equations and the Yukawa correction to gravity for such general models. I
find three interesting results: first, when the field behaves as phantom energy (equation of state less
than �1), then the coupling strength is negative, inducing a long-range repulsive force; second, the
dark-energy field might cluster on astrophysical scales; third, applying the formalism to a Brans-Dicke
theory with a general kinetic term it is shown that its Newtonian effects depend on a single parameter
that generalizes the Brans-Dicke constant.
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There has been in recent years a renewal of interest in
scenarios that propose alternatives or corrections to
Einstein’s gravity. These proposals are rather heteroge-
neous: they find their roots in multidimensional theories
in which gravity propagates in more than three dimen-
sions [1], in scalar fields predicted in superstrings that
mediate long-range interactions [2], and in various
mechanisms that might give cosmologically observable
effects [3] and violate the equivalence principle [4] or
Newton’s inverse square law (see, e.g., [5]). Moreover, the
cosmological observations of dark energy [6] can be ex-
plained in terms of an almost massless scalar field that, if
coupled to matter, would again modify gravity [3,4,7–9].
Although the scale of the dark-energy interaction is ex-
pected to be of cosmological size, observable effects in
clusters and galaxies [10] have been investigated.

Along with the increase of interest in the theory, new
experimental tests of gravity have been performed (see
the reviews in Ref. [11] and recent results in [12]). Most
laboratory experiments interpret the results in terms of a
possible Yukawa addition to the gravitational potential

V�r� � �G
m1m2

r
�1� �e�r=	s�: (1)

This form is the static limit of interactions from exchange
of bosons of mass ms � 	�1

s (in Planck units); the inter-
action strength � is proportional to the square of the
couplings. In view of the results below, it is important
to remark that for spin-0 particles with a standard
Lagrangian the strength � is always positive. A negative
amplitude � (i.e., a repulsive effect) can be obtained only
via the exchange of vector bosons [11] or in models with
finite size of gravitons [5]. The sign of � gives therefore
an important indication of the underlying physics.

The aim of this Letter is to evaluate the Yukawa
correction to gravity when the scalar field � has a non-
standard kinetic term, i.e., when the action is generalized
as follows (c � 8�G � 1, signature ���� ):
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where X � ��;��;�=2, U��� is any function of �, and
where field and matter are coupled in the action Sm
through the scalar-tensor metric e2!���g��; we are work-
ing therefore in the Einstein frame (the subscript m
denotes quantities that refer to matter). With the same
formalism we derive the equations of cosmological per-
turbations. In the standard case, p � X�U���. Then the
functions � and 	s in the Yukawa correction are [13]

� � 2�d!���=d��2 	 2!2
;�;

	s � m�1
s � �d2U=d�2��1=2 	 �U;���

�1=2
(2)

(there is an extra factor of 2 in � with respect to [13]
because they assume 2X as the kinetic term).

Higher-order kinetic terms appear quite generically in
superstrings (see, e.g., [14,15]). Moreover, they have been
used in cosmology to model an accelerated phase without
potential, the so-called k inflation or k essence [16,17].
General kinetic terms can also reproduce the behavior of
‘‘phantom energy,’’ i.e., a field with an equation of state
w � p=� <�1, which is realized with a negative kinetic
term [18]. Finally, they have been introduced also in the
form of the Born-Infeld Lagrangian LBI � �U����1�
2M�4X�1=2 [19]. Writing the energy-momentum tensor as

T���
�� � g��p� p0�;��;�; (3)

where p0 � @p=@X, one can readily identify the pressure
with p and the energy density with [16] � � 2Xp0 � p.

We find it convenient to write the potential as U �

U0e�
������
2=3

p
f����, so that U;� � �

��������
2=3

p
f1���U and the

nth derivative

U�n�
;� � ��1�n�2=3�n=2fnU; (4)

where f0 � 1 and fn � fn�1f1 � �dfn�1=d��=�
��
2
3

q
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general expressions below [i.e., those in which we do not
assume a specific form of p�X;U�] could be simplified by
a redefinition of the field �� 	 f���� such that the
potential becomes exponential; in practice this amounts
to setting f � � � const and fn � �n. The Klein-
Gordon equation of motion in a flat Friedmann-
Robertson-Walker metric with scale factor a written in
the e-folding time % � loga is

x0�
�
3�

H0

H

�
x�18Ax3H2p2;0

�Ay2f1��p0;1�6x2H2p1;1��A)�m; (5)

where we introduced the variables x2 � �02=6 and y2 �
U=3H2, and where A � �p1;0 � 6H2x2p2;0��1. (Note that
x2; y2 are the kinetic and potential energy density frac-
tions in the standard case.) We denote with pi;j the de-
rivative @i�jp�X;U�=@iX@jU (but we also use the
shorthand p0 � @p=@X, p00 � @2p=@X2; in all other cases
the prime denotes d=d%). The standard case is recovered
when p1;0 � 1, p0;1 � �1, and pi;j � 0 for any i� j > 1.
To conform to the previous notation (e.g., [20]), we de-
fined instead of � the coupling ) � �3=2�1=2!;�. The
Einstein equations are

1�
6H2x2p0 �p

3H2 ��m;
H0

H
��

3

2
�m�3x2p0: (6)

Notice that X � 3H2x2. The conservation equation for
matter is the same as in the standard coupled case (e.g.,
[20]). From the definitions of p and � we define the field
sound speed [16]

c2s �
@p=@X
@�=@X

�
p0

p0 � 6H2x2p00
� Ap0 (7)

and the equation of state

w �
p
�
� �1�

2x2p0

1��m
: (8)

Phantom dark energy, w<�1, requires therefore p0 < 0.
For instance, if �m � 0:3 and w � �1:3 [6] then
p0 � �0:1=x2.

We wish to keep the scalar Lagrangian as general as
possible. However, it is instructive to derive the condi-
tions of classical and quantum stability. The classical
stability is ensured by the condition � > 0 and c2s > 0,
the quantum stability by the positivity of the
Hamiltonian, i.e., [15] A > 0, p0 > 0, and p0;2 < 0.
Altogether, the conditions are p < p0

2X , p0 > 0, p00 >

� p0

2X , and p0;2 < 0.
Generally speaking, the scalar field can couple to mat-

ter with different couplings [4]. The observational con-
straints on the baryon coupling are rather tight [21], while
those on dark matter are much weaker and depend on the
cosmic evolution itself [22]. We assume in this Letter a
simplified model containing only one species of pressur-
eless matter.
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To derive the weak field limit, we use the longitudinal
gauge metric in % � loga:

ds2 � ��1� 2��
d%2

H2 � e2%�1� 2��dxidxi: (9)

Moreover, we redefine -� �
���
6

p
’ and introduce the mat-

ter density contrast -m � -�m=�m, the dimensionless
matter velocity divergence /m � riv�m�i=H, and the field
density contrast

��-� 	
-�

3H2

� 2’y2f1��p0;1 � 6x2H2p1;1� �
2x2

A
��

2x
A
’0:

In the absence of anisotropic stress � � �. The metric
perturbation in Fourier space with wavelength 	 � Ha=k
(not to be confused with 	s) is therefore

� � �3
2	

2��-m � 3	2/m��m � -��� � 6x’p1;0�:

From now on we assume ) � const although the general-
ization to )��� is straightforward (see, for instance,
[20]). The matter equations are

-0
m � �/m � 3�0 � 2)’0; (10)

/0m � �

�
2�

H0

H
� 2)x

�
/m � 	�2��� 2)’�: (11)

Let us now go to the Newtonian limit of small scales,
i.e., k! 1 or 	 ! 0. At the first nontrivial order the
perturbed scalar field equation is

’00 � F���’0 � m̂���2’� cs���2	�2’ � A)�m-m:

(12)

The function F reduces to �3�H0=H� in the standard
case and in the static limit x ! 0; its general expression
depends on higher-order derivatives, up to p3;0 but is very
complicated and unuseful for what follows (detailed cal-
culations will be published elsewhere). The dimensionless
effective mass m̂ in units of H�1 is given by

A�1m̂2 � 2y2p0;1�3ABf21H
2y2 � f2� � 3x2p1;0�3p1;0

� A�1� � 6f21H
2y4p0;2 � 18ABH2xy2f1p1;0

� 6H2y2�6ABf21H
2x2y2p1;1 � ABf1)�m

� xp1;1�3f1 � 2f2x� � 6f21H
2x2y2p1;2�; (13)

where B � p1;1 � 6H2x2p2;1. Consider now Eq. (12) in
the absence of matter, �m � 0, i.e., for a self-gravitating
boson fluid. For a standard kinetic term, cs � 1 and m̂2 �

U;��=H
2 � 12x2. The effective mass is of order unity or

less if the field is identified as dark energy (since x2 � 1
from the constraints on w, see Eq. (8), and U is expected
to be slow rolling with respect to the expansion rate);
therefore, the growth of the scalar field fluctuations is
prevented at all subhorizon scales. Scalar field clustering
is of course possible for large and negative potentials or
rapid oscillations [23], adding internal degrees of freedom
[24] and, in general, at near-horizon scales [25]. In the
181102-2
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general kinetic case, however, different values and signs
of cs and m̂ are possible. If m̂2 is negative, then the field
fluctuations grow at scales (in units of H�1) 	 > 	̂s �
jcs=m̂j; if c2s < 0, the instability is at scales smaller than
	̂s; finally, if both are negative, then the instability is at
all subhorizon scales.

Let us restrict now our attention to the case m̂2; c2s > 0.
Then the solution of the homogeneous equation associ-
ated to (12) is a fast oscillation around zero; the ampli-
tude of ’ is driven by the right-hand side forcing and is
given by the solution of

m̂���2’� cs���2	�2’ � A)�m-m; (14)

that is,

’ �
A)�m-ma2H2

m̂2a2H2 � c2sk
2 �

)
p0

k2	2�m-m
a2�m̂

2H2

c2s
� � k2

: (15)

From the equation for /0m and from (15) we see that the
potential acting on matter is the Newton-Yukawa poten-
tial �� � �� 2)’ that, upon Fourier transform, obeys
the Poisson equation

rir
i�� � �3

2H
2�m-m�1� ~�e�r=~	�; (16)

where

~� �
4

3

)2

p0
�

�
p0
; (17)

~	 �
	̂s
H

�
cs
m̂H

: (18)

These expressions generalize Eqs. (2) and are the main
result of this Letter. From ~� we see that a phantom field,
p0 < 0, coupled to matter mediates a repulsive force,
contrary to bosons with standard kinetic terms whose
interaction is always attractive. The force is long range if
m̂ � cs: this depends on the particular Lagrangian but for
a field that drives the cosmic acceleration this is what one
expects. In general, the repulsive scalar gravity may
balance and overcome gravity at small scales. From the
general expressions for ~� and ~	 we derive now two limits
that we can call the laboratory limit (i.e., the static
interaction) and the cosmological limit (i.e., a massless
or ‘‘dark-energy’’ field ). Finally, we apply the results to
the Brans-Dicke model.

Laboratory limit.—We specify the Yukawa correction
to the case in which the background solution is static,
�00 � �0 � 0, i.e., x ! 0 (assuming that p does not di-
verge, e.g., that it does not contain inverse powers of X).
Then we have cs � 1 and

m̂2 �
m̂2
s

p1;0 g�p�;

g 	 3
H2f1
f2

�
y2f1

�
p1;1p0;1

p1;0 � p0;2
�
�
)�mp1;1

p1;0

�
� p0;1;

(19)

where m̂2
s � 2y2f2 � U;��=H

2 is the dimensionless stan-
181102-3
dard mass, and therefore

~	�2 �
U;��

p0
g�p�: (20)

In general, g�p� can be given any value. For instance, if

p�X;U� � P1�X� �UP2�X=U�; (21)

where P1;2 are any function for which P1;2�0� � 0, then
g � 0 (i.e., an infinite-range force) in the static limit. If
instead the Lagrangian p is in the form p � K�X� �U
(additive Lagrangian), then g � 1 and ~	 �

�����
p0

p
=ms. It

follows that the effect of the generalized kinetic term
on the Yukawa correction can be neatly absorbed into the
two Yukawa parameters �; 	 as ~� � �=p0 and ~	2 �
	2
s=p

0. A phantom field with an additive Lagrangian and
small kinetic energy x therefore has an imaginary effec-
tive mass, unless of course U;�� is negative as well. As
already remarked this implies an instability of the dark-
energy fluctuations (whether or not the field is coupled). It
may be conjectured that if such an instability leads to
nonlinearity at large scales before the final singularity
(‘‘big rip’’), then the singularity itself might be avoided.

Cosmological limit.—If the field � is a dark-energy
field its effective mass m̂ is expected to be negligible.
Although in the general case this is not necessarily true,
we adopt now this simplification. Then from (15) we have

’ �
)
p0
	2�m-m: (22)

From this we see that the Yukawa correction to Newton’s
constant is G � GN�1�

4
3
)2

p0 �. Derivating -0
m and insert-

ing (22) we obtain finally

-00
m�-0

m

�
2�

H0

H
�2x)

�
�
3

2
�m-m

�
1�

4

3

)2

p0

�
�0: (23)

This equation generalizes the similar one given in
Ref. [20] and shows how the kinetic term enters the
growth of the matter perturbations. Although for sim-
plicity it has been derived for ) � const it is actually
valid also for ) � )���. The solution depends of course
on the cosmological history and on the particular form of
the field Lagrangian. This will be studied in subsequent
work. Here we notice only a few interesting points. First,
as already pointed out, a phantom field has p0 < 0 and
therefore its effect on -m counteracts gravity. This could
be used to set stringent limits on phantom fields coupled
to dark matter. Second, since in general p0 evolves in
time, then also the term )2=p0 is time dependent, even
if the coupling ) itself is constant. In particular, if p
contains higher-order terms in X then the effective cou-
pling )2=p0 will change when the kinetic terms become
subdominant, i.e., when the acceleration sets is. This
might introduce novel features as, e.g., a strong non-
Gaussianity in the galaxy distribution [26].

Brans-Dicke model.—As an application of the results
let us now consider a generalization of the Brans-Dicke
181102-3
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Lagrangian,

L �

���
g

p

2

�
�R�

2!BD

�
P�Y�

�
; (24)

where P is any function of Y � �g���;��;�=2 and
where !BD is the Brans-Dicke constant [a nonconstant
!BD can be absorbed in P�Y�]. The Brans-Dicke scalar
field � should not be confused with the gravitational
potential introduced in Eq. (9). Let us call this model
kinetic Brans-Dicke (kBD). Under the conformal trans-
formation ~g�� � e2!g�� the Lagrangian assumes the
canonical form with

p�X;U� �
X

3� 2!BD

�
3� 2!BD

U
X
P
�
X
U

��
; (25)

if � � e2! and if we define X � �!;�!
;��3� 2!BD�,

U � �3� 2!BD�e
�6!=2, and !��� � ��2�3�

2!BD��
�1=2. It follows finally from Eq. (17) that

~� �
2!2

;�

p1;0 �
1

3� 2!BDP;Y
; (26)

where P;Y � dP=dY. Moreover, since p�X;U� has the
form (21) then ~m � 0 in the static limit [if P�Y � 0� �
0, for instance, P �

P
nanY

n, n > 0]. This shows that the
Newtonian effects of the kinetic Brans-Dicke theory are
parametrized uniquely by!kBD � !BDP;Y and, therefore,
all the experimental constraints on !BD in the literature
[4] can be read equivalently as constraints on !kBD. A
order of unity !BD is then acceptable if P;Y is very large.

Conclusions.—A scalar-tensor metric e2!���g�� is ar-
guably the simplest, oldest, most studied, and most mo-
tivated extension of Einstein’s gravity. So far, however,
only a standard kinetic term has been employed in scalar-
tensor theories (see, e.g., [3,4]). On the other hand, a
generalized kinetic term has been proposed to account
for a phantom equation of state and kinetic-driven infla-
tion and on theoretical grounds. This Letter lies at the
crossroad of these two streams: it investigates a kinetic
scalar-tensor gravity, focusing on the properties that do
not depend on the particular model. Perhaps the most
interesting result is that a field with equation of state w<
�1 (a phantom field) mediates a repulsive force, contrary
to ordinary spin-0 bosons. We also derived the field ef-
fective mass in the general case and showed that it may
induce clustering of dark energy. We also have shown that
the Newtonian effects of a kinetic Brans-Dicke model are
parametrized by a single quantity, !kBD � !BDP;Y , that
generalizes the Brans-Dicke constant.
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