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We propose a covariant protocol for transmitting reference frames encoded on N spins, achieving
sensitivity N�2 without the need of a preestablished reference frame and without using entanglement
between sender and receiver. The protocol exploits the use of equivalent representations that were
overlooked in the previous literature.
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In the ideal world of classical physics, spatial directions
and reference frames can be communicated with arbi-
trary accuracy using classical communication and a pre-
established common frame, or by just sending physical
objects, such as gyroscopes. In the second case, if Alice
wants to send a frame to Bob, she needs only to align the
rotation axes of her gyroscopes with the directions she
wants to communicate before sending them to Bob. Once
Bob has measured the direction of the gyroscopes, a
common reference frame has been established. Clearly,
in the real world, arbitrary accuracy is limited by quan-
tum fluctuations. However, similarly to the case of phase
estimation [1,2], we can learn how to harness the quan-
tum laws in order to achieve the ultimate precision limits
of the communication protocol.

The primitive systems that one can use for communi-
cation of reference frames are quantum spins, since they
can be considered as elementary quantum gyroscopes. In
this scenario, Alice transmits a Cartesian reference
frame by preparing N spins in a quantum state jAi which
is related to her set of Cartesian axes n�A� �

:
fnAx ; nAy ; nAz g

and by sending them to Bob. With respect to Bob’s axes
n�B� �

:
fnBx ; n

B
y ; n

B
z g, such a state corresponds to jAgi �

:

U	N
g jAi, where the unitary matrix Ug represents the ro-

tation g connecting Bob’s frame to Alice’s one, namely
n�A� � gn�B�. Now, Bob’s task is to estimate the rotation g
of the state jAgi, and then to align his axes with Alice’s
frame. It is worth noting that such a scheme works
without the need of any preestablished reference frame.
Notice also that the problem of aligning reference frames
using quantum spins is formally equivalent to the prob-
lem of estimating unknown SU�2� rotations (which is the
same problem of estimating the dynamics of an unknown
qubit gate [3–5]).

For the estimation of rotations with a finite number N
of spins there is a nonzero probability of error which
vanishes in the limit of infinite N. Now the issue is to
optimize the accuracy of the estimation for a given N by
properly choosing Bob’s measurement and Alice’s input
state jAi. In the recent literature [6–9], much progress has
been made in this direction, and a number of strategies
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have been proposed in specific cases. Nevertheless, in
some of these works [7,8], it was argued that equivalent
representations of SU�2� are redundant for encoding ro-
tations, and this oversight led to false claims of optimal-
ity in Ref. [7], where an asymptotic average error 1=N
was found. In this Letter, we show that, on the contrary,
equivalent representations play a crucial role in enhanc-
ing the sensitivity of the estimation, since the inclusion of
multiple equivalent representations increases the dimen-
sion of the Hilbert space available to storing information.
Moreover, we resolve a long-standing controversy over
whether the optimal strategy is covariant or not. In
Ref. [8], a noncovariant strategy is shown to do better
(with an error scaling as 1=N2) than the covariant strat-
egy in Ref. [7]. While the latter strategy was mistakenly
thought to be best, it appeared that the best covariant
strategy was not optimal. The present Letter resolves the
puzzle by showing that the optimal covariant strategy
does just as well as those presented in Ref. [8] with an
asymptotic error 1=N2.

Finally, as we will show, there is a relation between the
present scheme and the entangled protocol of Ref. [5],
with the role of entanglement here played by equivalent
representations.

Let us now summarize the main points in the problem
of estimating SU�2� rotations. The most general estima-
tion strategy that Bob can perform—including both mea-
surements and data analysis—is described by a positive
operator-valued measure (shortly POVM), namely, by a
set of positive operators fM�g�g in the Hilbert space of N
spins such that

R
dgM�g� � I, with the integral extended

to the whole SU�2� group, and dg denoting the invariant
Haar measure on SU�2�, normalized such that

R
dg � 1.

The probability density of estimating g when the true
rotation is g
 is given by the Born rule: p�gjg
� �

:

Tr�M�g�jAg
 ihAg
 j
. Finally, the efficiency of a strategy
is defined in terms of the transmission error

e�g; g
� �
: X
��x;y;z

jgnB� � g
n
B
�j

2; (1)

which quantifies the deviation between the estimated axes
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and the true ones. The maximization of the efficiency
then corresponds to the minimization of the average error

hei �
Z
dg


Z
dgp�gjg
�e�g; g
�: (2)

Notice that we have assumed a uniform a priori distribu-
tion dg
 for the true rotations, according to the fact that
g
 is completely unknown. Since the function e�g; g
�
enjoys the invariance property e�g; g
� � e�hg; hg
� for
any h 2 SU�2�, as proved by Holevo [1], there is no loss
of generality in assuming that Bob’s strategy is described
by a covariant POVM, namely

M�g� �
:
U	N
g �Uy	N

g ; (3)

with � a positive operator. This fact relies on the covari-
ance of the set of input states. Indeed, for an arbitrary
POVM N�g� one can always construct a covariant one
with the same average error, corresponding to
� �

: R
dgUy	N

g N�g�U	N
g .

Let us now enter the core of our method. In what
follows, our aim will be to use equivalent representations
for constructing a highly efficient reference state jAi in
the space H	N of N spins. For this purpose, H	N can be
conveniently decomposed in terms of the Clebsch-
Gordan series, i.e., as direct sum of orthogonal subspaces
which are irreducible under the action of SU�2� rotations,
namely

H 	N �
MJ
j�0�12�

Mnj
��1

Hj�: (4)

Here, j represents, as usual, the quantum number of the
total angular momentum: it runs from 0 ( 12 ) to J � N

2 for
N even (odd), and labels the equivalence class of each
irreducible representation. On the other hand, � is a
degeneracy index labeling different equivalent represen-
tations in the same class j. For example, with three spins,
one has 1

2
	3 � 3

2 �
1
2 �

1
2 , so that for the class j � 1

2 , there
are two equivalent irreducible representations corre-
sponding to two orthogonal subspaces. The number nj
of equivalent representations in the class j is given by [10]

nj �
2j� 1

J� j� 1

2J
J� j

� �
: (5)

In each invariant subspace Hj�, we can introduce the
basis fjj�;mi;m � �j; . . . ; jg made of eigenvectors of
the z component of the total angular momentum. With
respect to these bases, SU�2� rotations are represented by
the ordinary Wigner matrices U�j�

nm�g�, namely

U	N
g jj�;mi �

Xj
n��j

U�j�
nm�g�jj�; ni: (6)

Notice that two vectors jj�;mi and jj�;mi belonging to
different orthogonal subspaces Hj� and Hj� transform in
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the same way under SU�2� rotations. Let us define, then,
the operator

T�j�
�� �

: Xj
m��j

jj�;mihj�;mj (7)

that takes a vector in the space Hj� to the corresponding
one in Hj�. Using this operator, we will compare vectors
in different equivalent subspaces, and we will say that two
vectors j j�i 2 Hj� and j’j�i 2 Hj� are iso-orthogonal

if h j�jT
�j�
��j’j�i � 0.

As opposite to the approach used in the previous works,
here the state jAi will be chosen in order to use as many
equivalent representations as possible. For this purpose,
the crucial point is that the maximum number of repre-
sentations one can exploit in the class j is not nj, but kj �

:

minfnj; 2j� 1g, corresponding to the fact that equivalent
representations are useful only when one takes iso-
orthogonal vectors in different representations. The proof
of this statement has been derived in [11] and relies on the
fact that for any given vector jAi, there is always a
rearrangement of the decomposition (4) such that jAi
has components on at most kj representations from the
class j, and these components are all iso-orthogonal to
each other. Using (5), it is easy to see that kj � 2j� 1 for
j < J and kJ � nJ � 1. Keeping this in mind, we make
the following choice for Alice’s reference vector

jAi � AJjJ; Ji �
XJ�1

j�0�12�

X2j�1

��1

Aj��������������
2j� 1

p jj�;m���i; (8)

where without loss of generality, Aj � 0, and m��� is an
injective function, namely m��� � m��0� if � � �0, ac-
cording to the idea of taking an iso-orthogonal vector for
each equivalent representation. Notice that the term for
j � J, which has multiplicity nJ � 1, has been chosen
arbitrarily with m � J. However, as we will see in the
following, its contribution is negligible in the asymptotic
limit of large N.

Now we need to specify which covariant POVM Bob
must use to extract the rotation g from the state jAgi;
namely, we must provide the operator � in Eq. (3). First,
we observe that, since the vector jAi lies in the invariant
subspace of H	N

K � HJ �
MJ�1

j�0�12�

M2j�1

��1

Hj�; (9)

the probability distribution

p�gjg
� � hAg
 jU
	N
g �Uy	N

g jAg
 i (10)

depends only on the restriction � �
:
P�P, where P is the

projection on K. Second, instead of optimizing Bob’s
POVM in order to minimize the transmission error (2),
here we will take the maximum likelihood POVM [11],
180503-2



VOLUME 93, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S week ending
29 OCTOBER 2004
namely, the POVM which maximizes the peak p�g
jg
�
in the probability distribution p�gjg
�. For this POVM,
one simply has � � jBihBj, where

jBi�
��������������
2J�1

p
jJJi�

XJ�1

j�0�12�

X2j�1

��1

�������������
2j�1

p
jj�;m���i: (11)

We stress that in the eigenstates of Eq. (11), the z compo-
nent of the total angular momentum is referred to Bob’s
axes, hence the transmission protocol does not require a
common reference frame (we remind that Alice’s state jAi
is seen as jAgi � U	N

g jAi in Bob’s reference frame).
With the previous settings, the problem of optimizing

the coefficients fAjg in the state jAi in order to minimize
the transmission error becomes straightforward. First,
one can note [7] that e�gjg
� � 6� 2��gg
�1�, where
��g� �

: P1
m��1U

�1�
mm�g� is the character of the Wigner

matrices for j � 1. Then, minimizing the average error
hei is equivalent to maximizing the average character

h�i �
: Z

dg��g�p�gje�; (12)

e denoting the identical rotation. Notice that the integral
over g
 in (2) has been performed by exploiting the
invariance property of covariant POVM’s, i.e., p�gjg
� �
p�hgjhg
�, 8h 2 SU�2�. Using the identity
Z
dgU�1�

mm�g�U
�j�
rs �g�U

�l�

ik �g� �

1

2l� 1
h1mjrjliihlkj1mjsi;

(13)

where h1mjrjlii denote the Clebsch-Gordan coefficients,
and performing the sums over equivalent representations,
we obtain

h�i �
XJ

j;l�0�12�

AjMjlAl � ATMA; (14)

where A denotes the column vector �AJ; AJ�1; . . . ; A0�1=2��

and M is the tridiagonal matrix

Here, # � 0�1� for even (odd) values of N. Since the
normalization of Alice’s vector implies ATA � 1, max-
imizing h�i simply consists in finding the greatest ei-
genvalue $ for the matrix M: $ is actually the maxi-
mum h�i for our strategy and the optimal coefficients
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fAjg are the components of the corresponding normalized
eigenvector.

For small N, one can easily perform numerical diago-
nalization:, for example, with N � 3, 5, and 9, one finds
$ � 1:3886, 2.0864, and 2.6294, respectively. These val-
ues can be compared with those obtained in Ref. [7]
without the use of equivalent representations: even for
N � 3, one can see a 17% improvement of h�i. On the
other hand, in the asymptotic limit of large N, an ana-
lytical treatment is possible, which is essentially based on
the fact that the contribution of the J representation
becomes negligible. Let us denote the dependence on N
by writing M�N� and $�N�. If we introduce the matrix T�N�

obtained from M�N� by canceling the first row and the first
column (corresponding to ignore the J representation)
and call %�N� its greatest eigenvalue, then we have $�N� �

%�N�. Nevertheless, it is also easy to see that %�N�2� �

$�N�, due to the fact that 0 � M�N�
ij � T�N�2�

ij for any i; j

[12]. Hence, the asymptotic behavior of $�N� is bounded
by %�N� � $�N� � %�N�2�. The matrix T�N� can be analyti-
cally diagonalized in terms of Chebyshev polynomials,
and its greatest eigenvalue is %�N� � 1� 2 cos� 2&

N�1�. This
implies the asymptotic behavior h�i � 3� 4&2

N2 , corre-
sponding to the following power law for the transmission
error

hei �
8&2

N2 : (16)

Comparing this result with the behavior hei � 8
N of [7],

one can observe a quadratic improvement due to the use of
equivalent representations.

Notice that hei � 8&2

N2 is also the same efficiency of the
protocol in [9], where, by adopting the idea introduced in
Ref. [5], entanglement between sender and receiver is
exploited, and a collective measurement on two sets of
N spins is performed. With respect to such protocol, the
present scheme provides a saving of resources (i.e., half
number of spins and no need of entanglement between
Alice and Bob), and, more importantly, does not require a
preestablished reference frame [13].

There exists a connection between the present proto-
col and the entanglement-assisted one. In fact, let us
introduce for any class the representation space Hj of
dimension 2j� 1 and the multiplicity space Mj of di-
mension nj, and write jj�;mi as jjmi 	 j�i 2 Hj 	Mj.
Choosing fj�i;� � 1; . . . ; njg as an orthonormal basis for
Mj, one has

Mnj
��1

Hj� � Hj 	Mj: (17)

By means of such isomorphism, we can rewrite our
choice of Alice’s state as
180503-3
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jAi � AJjJJi �
XJ�1

j�0�12�

AjjEji; (18)

where

jEji �
: 1��������������

2j� 1
p

X2j�1

��1

jjm���i 	 j�i (19)

is a maximally entangled state between the representation
space Hj and the multiplicity space Mj [14]. If we neglect
the J term in jAi, then we get a vector which is formally
the same as in [9]. This means that the protocol exploiting
entanglement and 2N spins is reproduced using N spins
and without entanglement between sender and receiver.
We stress that here the entanglement is between the rep-
resentation and the multiplicity space (which is not nec-
essarily related to entanglement between the N physical
spins).

In conclusion, in this Letter, we have shown how to
exploit equivalent representations of the rotation group
for saving quantum resources in transmitting a reference
frame. A quadratic improvement of the transmission ef-
ficiency has been achieved with respect to the protocol
of Ref. [7] which mistakenly neglects equivalent repre-
sentations. This is due to the fact that the use of such
representations provides more room for storing informa-
tion. An intuitive justification of this fact is provided by
the maximum likelihood strategy [11]: in fact, the maxi-
mum likelihood for a pure state is exactly proportional to
the dimension of its orbit under the action of the group,
and for N spins, this is at most dmax � �2J� 1� �PJ�1
i�0�1=2��2j� 1�2 � N3. In our protocol, this dimension

is fully exploited by entangling the representation space
with the multiplicity space, whereas without such entan-
glement one would obtain a dimension d � �2J� 1� �PJ�1
j�0�1=2��2j� 1� � N2. Notice that the use of multiplicity

spaces has been found to be necessary also in optimal
schemes for the transmission of elements of the permu-
tation group [15], and in achieving the optimal capacity
for private classical communication using a private
shared reference frame [16].

Our results finally settle the controversy about covari-
ance of the optimal protocol, which was raised in Ref. [8],
by providing a covariant scheme with the same perform-
ance 1=N2.

We also proved how the presence of equivalent repre-
sentations provides the remarkable possibility of repro-
ducing the same efficiency of covariant entangled
protocols without the need of a preestablished reference
frame and without using entanglement between sender
and receiver. The present use of equivalent representations
is a general method which is not restricted to the trans-
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mission of reference frames, and is expected to provide
useful improvements also in other estimation problems.
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