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A probability of electron-positron pair production by photons in strong nonuniform fields is derived
by applying a model trajectory method in the frame of a semiclassical approach. In addition to the well
known invariant field parameter �, a new invariant parameter � is introduced to characterize the
nonuniformity of the field. For � � 1, the obtained expression is reduced to the uniform-field
approximation while it approaches the Bethe-Heitler formula for � � 1. The pair production is
predicted for relatively weak external fields where the uniform-field approximation gives no effect.
The theory agrees well with the experimental results of crystal-assisted pair production.
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In strong electromagnetic fields, the process of
electron-positron pair production by energetic photons
is rather different from the well known Bethe-Heitler
type [1,2]. Indeed, spontaneous decay of photons into
pairs becomes significant when the field tensor F�� and
photon 4-momentum k� satisfy � * 1, where � is the
well known invariant field parameter [1], � � ��0=Ecr��

��F��k
��2�1=2, Ecr � �m20c

3�=�e �h� � 1:3� 1016 V=cm ��

1:4� 1013 G� is the critical electric field, �0 the Compton
wavelength, and m0 the electron mass at rest. For ex-
ample, observations indicate that neutron stars have
magnetic fields higher than 1012 G where quantum-
electrodynamic (QED) processes become rather exotic
[3,4]. Also, recent development of intense x-ray free
electron lasers could provide field strength E *

1011 V=cm in the near future, which opens up the possi-
bility to test other types of pair-production mechanisms
by using crossed laser beams [5] or relativistic ions [6].

Under the condition � * 1, full calculations of strong-
field QED processes such as radiation and pair production
by photons become very complex even in the simplest
case of the uniform-field approximation (UFA) [7]. To
overcome such difficulty, Ba�er and Katkov proposed a
semiclassical theory of radiation in which the classical
trajectory of a particle plays an important role [8,9]. The
pair-production process in UFAwas also derived from the
semiclassical radiation formula by using ‘‘crossing sym-
metry’’ [1,9].

For experimental study of QED in strong external
electric fields, oriented crystals have appeared to be
very good natural tools as the averaged electric field of
an atomic string provides E & 1012 V=cm [10,11].
Therefore, � * 1 is satisfied for energetic photons with
energies �h! * 10 GeV. The UFA was applied to the
‘‘crystal-assisted’’ pair-production process and explained
the experimental result very well at �� � 0, where �� is
the incident angle of the � photon to the crystal axis [10].
However, for �� > �L, UFA is inapplicable because the
field nonuniformity becomes significant, where �L repre-
0031-9007=04=93(18)=180407(4)$22.50 
sents the Lindhard critical angle of channeling [12]. This
inapplicability of UFA has caused serious difficulty to
analyze the strong-field QED phenomena because the
only possible way to obtain quantitative values has
been, so far, to perform very complex numerical compu-
tations. For example, the authors of Ref. [13] calculated
the Ba�er-Katkov formula and demonstrated a good
agreement of their numerical results with the experimen-
tal ones [14]. However, their computation is not reproduc-
ible because unexplained ‘‘numerical experiments’’ were
needed in their computation [13]. Similar numerical
evaluations were made in Ref. [15] and obtained a good
agreement with the experimental results [16], but again
the method of numerical calculation was not described.

The purpose of this Letter is to give a simple as well as
precise expression of the pair production in strong fields
taking into account the nonuniform effect of the fields.
The main idea is to use a trial trajectory method devel-
oped recently for radiation processes [17]. The method
permits us to express the corresponding cross section
directly in terms of the interaction potential rather than
through the trajectories.

Let us start with the semiclassical radiation formula by
Ba�er and Katkov [8,9], which can be rewritten in the
following form for the number of photons emitted per
unit time

dN
d�

�
�c

��0�
�J1 	 J2�; (1)

where� � �h!=E, �h! is the energy of the emitted photon,
E the initial energy of a radiating particle, � � E=�m0c2�,
and � the fine-structure constant. The factors J1 and J2
are defined by

J1 �
Z 1

0

�
1	

�2

2
���?�

2

�
sin�

d�
�

�
�
2
; (2)

J2 �
��� �0�2

2��0

Z 1

0

�2

2
���?�

2 sin�
d�
�
; (3)

where ��? � �?�t	� � �?�t��, �?�t� is the transverse
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velocity at the time t, t� � t0 � �=2, E0 � E� �h!, and
�0 � E0=�m0c

2�. The phase factor���� determined by the
trajectory of a radiating particle is given by

���� �
!��

2�2
�

!�

2c2�
����2 	

!�

2

Z t	

t�
�2?��

0�d�0; (4)

where !� � ��=�0�! and �� � ��t	� � ��t��, ��t� being
the transverse coordinate.

The pair-production probability is obtained by apply-
ing crossing symmetry to Eq. (1) [1,18]. By changing the
variables as E ! �E	, E0 ! E�, and ! ! �!, and
multiplying the ratio of the density of final states,
E2	dE	=� �h

3!2d!�, we obtain the pair-production proba-
bility

dN	

d�	

�

�
�c
��0

��
m0c2

�h!

�
J; (5)

where dN	=d�	 represents the number of produced posi-
trons, J � J1 	 J2, �	 � E	= �h!, and E	�E�� is the
energy of the positrons (electrons) [19].

Using the quantum synchrotron formula for the calcu-
lation of J, one obtains the UFA result [10,20]

JUFA �
1���
3

p

��
1� �	

�	

	
�	

1� �	

�
K2=3����

	
Z 1

��
K1=3���d�

�
; (6)

where �� � 2=�3�	�1� �	���, � � ��0=Ecr��

��F��k��2�1=2 � � �h!=m0c2��E0=Ecr�, and E0 is the field
strength.

As is well known, the UFA expression of Eq. (6) is
derived by assuming that the trajectory of a positron has a
constant curvature. Of course, usually a field is not uni-
form and the trajectory of a positron depends on the local
value of the field. A typical situation is that the potential
of a field has a maximum at a certain point of closest
approach to the field center and then it gradually de-
creases as a function of the distance from the center.
Recently, the present authors introduced a trial trajectory
called the ‘‘th trajectory’’ [17] to take into account the
effect of such field variation. We have assumed that the
trial trajectory is given by the following transverse ve-
locity

�?�t� � b0 	 b tanh�t=T�; (7)

where b0 � ��?1 	 �?2�=2, b � ��?2 � �?1�=2, �?1 �
�?�t ! �1�, �?2 � �?�t ! 	1�, and T is the interac-
tion time. The th trajectory asymptotically approaches to
the straight paths at t ! �1 while, at jtj & T, the tra-
jectory is substantially curved. Since Eq. (7) is integrated
easily, we obtain an analytic expression for J. Combining
crossing symmetry with results for nonsynchrotron ra-
diation [17], we obtain,
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Jth �
Z 1

0

d�
�

�
�2
�
1� �	

�	

	
�	

1� �	

�
tanh2�� 1

�

� sin�~����� tanh��� 	
�
2
; (8)

where � � �	b, b � jbj, ~� � ��1	 �2�=��	�1�
�	���, and � � �2=�1	 �2�. E0 in � is the field strength
at the pair-production point. The arguments similar to
those given in Ref. [17] permit us to consider Eq. (8) as a
good approximation to the precise expressions (1)–(4). It
should be noted that, in addition to the invariant field
parameter, Eq. (8) has one more Lorentz invariant pa-
rameter � which represents the field nonuniformity. � can
be expressed in terms of the local acceleration of the
created positron/electron and its higher derivatives[17].

In spite of its simplicity, Eq. (8) is still not very
convenient for concrete numerical calculations due to
the very rapid oscillations in the integrand. This problem
can be avoided by the saddle point method [21]. The
precise path of steepest descent for the phase in Eq. (8)
has a complicated form, but the correct value can be
obtained by integrating Eq. (8) along the approximate
path of steepest descent, y�x� � y0 	 �x2, where � �
�2���1 	 �=6, tany0 � 1=�, x � Rez, y � Imz, and z is
the time variable � in Eq. (8). We obtain,

Jth � Im
Z 1

0

�
�2
�
1� �	

�	

	
�	

1� �	

�
tanh2z� 1

�

� exp�~��z�� tanhz��
�
1	 i

dy
dx

�
dx
z
; (9)

where dy=dx � �1=�	 �=3�x. According to our numeri-
cal computations, integrations based on Eq. (9) appear
more than a thousand times faster than direct numerical
integrations of Eq. (8). As � becomes larger, ordinary
numerical integration of Eq. (8) becomes more and more
difficult and it takes a longer time to obtain a converged
result. In contrast, Eq. (9) always converges very fast,
being independent of �.

In Figs. 1–3, we show the � and � dependence of the
pair-production rate Jth calculated with the use of Eq. (9).
When � becomes larger, Jth approaches to the UFA. On the
other hand, when � � 1 is satisfied, Jth gives the Bethe-
Heitler type spectra. The reduction to UFA formula may
be easily seen as follows. For � � 1, the factor sin�~����
� tanh��� in Eq. (8) oscillates very rapidly and only the
very narrow region � � 1 contributes to the integral.
Then, we may approximate as tanh� � �� �3=3 and
obtain,

Z 1

0

d�
�
�A	 B�2tanh2�� sin

�
~����� tanh��

�

�
Z 1

0

dx
x
�A	 Bx2� sin

�
2

3
�
�
x	

1

3
x3
��
; (10)

where x � ��, and A and B are arbitrary constants. Using
Eq. (10) it is straightforward to show that Eq. (8) reduces
to Eq. (6). On the other hand, it is generally shown that for
� � (?� � 1 (the dipole limit) the Ba�er-Katkov for-
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FIG. 3. Same as Fig. 1, but � � 0:1.
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FIG. 1. The � dependence of pair-production rate calculated
by using Eq. (8) as a function of the energy of produced
positrons, E	= �h! (� � 10). The dotted line represents the
UFA.
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mula reproduces the Bethe-Heitler result no matter how
the detailed shape of the scattering potential is [9,20]. Jth
naturally follows this general tendency for � � 1. It
follows from Fig. 3, that UFA does not give pair produc-
tion for �< 0:1, which corresponds to the region of
validity of classical electrodynamics for radiation. We
predict, therefore, the pair production even for small �
where UFA gives negligible probability. It is worthwhile
to mention that we may separate the spin contribution by
using the same method used in Ref. [22]. Other of our
numerical calculations have shown that influence of spin
on pair production increases with an increase of �
whereas its influence decreases with an increase of �.
The influence of spin on the radiation process has been
studied recently in [11].

As an application of the pair-production theory devel-
oped here, we have calculated the crystal-assisted pair-
production probability as a function of the photon inci-
dent angle. In Fig. 4, we compare our results with the
experimental ones [14]. Considering both the simplicity
of our expression and the fact that there is no fitting
parameter, the overall agreements are satisfactory. In
the numerical computations, we have employed the one-
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FIG. 2. Same as Fig. 1, but � � 1.
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string approximation. The area of the string is taken equal
to that of a transverse Wigner-Seiz cell of Geh110i. The
photon distribution has been assumed to be homogeneous.
The thermally averaged Molière potential with the Debye
temperature �D � 374 K has been used for the calcula-
tion of the string potential. This is because we have found
that the Molière potential gives the better result at �� � 0
(i.e., the UFA limit) than the thermally averaged Doyle-
Turner potential. It should be emphasized that there is no
free parameter in our numerical calculations. If we chose
the potential so as to fit the UFA limit (�� � 0) with the
experimental data, the agreements would have become
even better.

In Fig. 5 we compare our theory with others.
The dotted lines show the numerical results of the modi-
fied UFA expression given by Ba�er, Katkov, and
Strakhovenko (BKS), which has the lowest order correc-
tion term proportional to �2� [20]. As is expected, the BKS
expression is applicable only in the region �� & �0, where
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FIG. 4. Numerical results of crystal-assisted pair production
in Geh110i. The symbols represent the experimental data [14].
No fitting parameter is included in the full calculations (solid
lines). The dotted, dashed, and dashed-dottted lines represent
the results based on the impact approximation.
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�0 � U0=�m0c2� represents the applicability of the Born
approximation [20], U0 being the height of the atomic-
string potential. On the other hand, the numerical values
of coherent pair production (CPP, the dashed lines) [23]
follow the experimental data up to �� * �0. The peaks
observed in Fig. 4 disappear at higher photon energies *

200 GeV, such as the line of 300 GeV. This is in agree-
ment with the prediction in Ref. [20].

For the purpose of making an estimation as easy as
possible, it is desirable to develop yet a simpler method of
computation. The use of the ‘‘impact approximation’’ for
calculating the parameter � is suitable for such a purpose.
In the impact approximation, the momentum change dur-
ing collision is assumed to be proportional to the force
multiplied by the interaction time T so that we have
p	1 � p	1 � F��m�T, where �m is the impact parameter
at the point of pair production, which is taken as the
minimum distance to the string for a classical trajectory.
The interaction time may be estimated as T �
a�2�m�=v?, where a is a free parameter of order 1.
Using �	mc�?�1 � p�1, we may calculate � as

� � �	

���������?	1 � �?�1

2

��������� a
�
F��m��m
mc2��

�
: (11)

Since Eq. (11) is determined only by the field at a certain
point �m and the photon incident angle ��, we are ready
to calculate Eq. (9).

The impact approximation is also convenient to see
physics. The maximum value of field nonuniformity pa-
rameter �max at a given �� satisfies �max � �0=�� because
F��m��m & U0. Therefore, at �� > �0 all the contribu-
tion comes from small �, while at �� < �0 large � con-
tributes more and more as �� decreases. It should be
noted, however, that the contribution from � < 1 is not
negligible at �L & �� < �0.

In Fig. 4 we have shown the results of the impact
approximation. The dotted line, dashed line, and
dashed-dotted line represent a �

���
2

p
=2,

���
2

p
, and 2

���
2

p
,
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respectively. Calculations for other energies have shown
similar behavior, suggesting that a �

���
2

p
gives reasonable

agreements. Taking into account the simplicity of the
impact approximation, the agreement seems enough for
estimations in planning experiments as well as for eval-
uating pair-production rate in strong electromagnetic
fields appearing in astrophysical problems. Thus, we
may summarize that, if the motion of the produced pair
is classical, the pair production by photons in the strong
nonuniform field can be fairly well described by the
simple standard expression, depending only on two
Lorentz invariant parameters, � and �.
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