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Confined Quantum Time of Arrivals
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We show that formulating the quantum time of arrival problem in a segment of the real line suggests
rephrasing the quantum time of arrival problem to finding states that evolve to unitarily collapse at a
given point at a definite time. For the spatially confined particle, we show that the problem admits a
solution in the form of an eigenvalue problem of a compact and self-adjoint time of arrival operator
derived by a quantization of the classical time of arrival, which is canonically conjugate with the
Hamiltonian in a closed subspace of the Hilbert space.
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The incorporation of time as a dynamical observable in
quantum mechanics remains controversial [1]. And there
is still no general consensus on how to do so, much less on
what constitutes a meaningful quantum representation of
time. This problem is widely known as the quantum-time
problem, and it takes on different facets. One of these is
the question of whether or not time observables, such as
time of arrivals, can be meaningfully represented by a
self-adjoint operator, i.e., by a time operator. The basic
requirement for a time operator is conjugacy with the
Hamiltonian, in keeping with quantum dynamics. How-
ever, the search for such an operator has been obstructed
by nearly seven decades by Pauli’s well-known theorem:
No such self-adjoint operator exists for semibounded
Hamiltonians [2,3]. Thus it has been the consensus that
one cannot introduce time operators without a compro-
mise —either self-adjointness or conjugacy but not both.
The former, for example, has been advocated in con-
structing self-adjoint time of arrival operators [4]. In
recent years, the problem of introducing time in quantum
mechanics has taken the latter route, which required time
operators to be positive-operator-valued measurements
that transform covariantly under time translations [5].

However, one of us has recently demonstrated that
Pauli’s theorem does not hold in Hilbert space, and has
proved the existence of self-adjoint characteristic time
operators for semibounded Hamiltonians with compact
inverses [6]. These settle the question of the existence of
self-adjoint operators canonically conjugate with a semi-
bounded Hamiltonian. But addressing the existence issue
has raised more issues. For example, these time operators
may be canonically conjugate with the Hamiltonian in a
closed subspace of the Hilbert space (a nondense sub-
space, i.e., there exists a nonzero vector orthogonal to the
subspace), and they can be bounded and compact, pos-
sessing a complete (normalizable) eigenfunctions with
discrete (bounded) eigenvalues. The former property
goes counter to the prevailing idea that a canonical pair
must at least be canonical in a dense subspace to be
meaningful, while the latter conflicts with the generally
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acknowledged basic covariance property of a meaningful
time operator. The questions then arise as to what occa-
sions these time operators appear and as to how we should
interpret their eigenfunctions and eigenvalues.

To address these issues, we tackle in this Letter the free
quantum time of arrival (QTOA) problem [7] anew. And
we do so for two reasons. Firstly, the problem has been
serving as the archetype of the perceived gross inability
of standard quantum mechanics to accommodate the
quantum aspects of time which has been traditionally
attributed to Pauli’s theorem. Secondly, the same problem
provides us, ironically, with a perfect example of the
existence of a self-adjoint, compact time operator, which
is canonically conjugate with the Hamiltonian in a closed
subspace. In this Letter, we show that formulating the
QTOA problem in a segment of the real line suggests
rephrasing the problem to finding states that collapse at a
given point, say at the origin, at a definite time. We show
that, for a spatially confined particle, the problem admits
a solution in the form of an eigenvalue problem of a
compact and self-adjoint time of arrival operator derived
by a quantization of the classical time of arrival.

The QTOA problem is traditionally the problem of
finding the time of arrival (TOA) distribution of a struc-
tureless particle prepared in some initial state. This op-
erator is presumed to be the quantized classical TOA in
unbounded free space. That is, if a classical free particle,
of mass� in one dimension at location qwith momentum
p, will arrive, say, at the origin at the time T�q; p� �
��qp�1, then the quantum TOA distribution must be
derivable from the quantization of T�q; p�, from the op-
erator T����qp�1�p�1q�=2. Formally the time of
arrival operator T is canonically conjugate to the free
Hamiltonian, H��2���1p2, i.e. �H;T� � i �h. It is well
known though that the resulting TOA-operator T is maxi-
mally symmetric and non-self-adjoint in unbounded
space [7]. For a long time the non-self-adjointness of
the quantized classical TOA has been construed as a
consequence of Pauli’s theorem [3].
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First, let us show that the non-self-adjointness of T can
be addressed by spatial confinement. Let the particle be
confined between two points with length 2l. This assump-
tion is natural because all experiments are essentially
bounded in space. If p � 0 and jqj< l, the classical
time of arrival at the origin (the first time of arrival,
i.e., arrival without reflection from the boundaries) and
the Hamiltonian are still given by T � ��qp�1 andH �
�2���1p2, respectively; moreover, T remains canonically
conjugate with the Hamiltonian. Then T is still the totally
symmetric quantized form of T even when the particle is
confined, and it likewise remains canonically conjugate
with the Hamiltonian.

To give meaning to T, we attach the Hilbert space
H � L2��l; l� to the system. The position operator is
unique and is given by the bounded operator q, �q’�	
�q� � q’�q� for all ’�q� in H . On the other hand, the
momentum operator and the Hamiltonian are not unique,
and have to be considered carefully. Our choice is dictated
by the assumption of a closed system and by the require-
ment of consistency with quantization: We assume the
system to be conservative and we require that the evolu-
tion of the system be generated by a purely kinetic Hamil-
tonian. The former requires a self-adjoint Hamiltonian to
ensure that time evolution is unitary. The later requires a
self-adjoint momentum operator commuting with the
Hamiltonian to ensure that the quantum Hamiltonian is
the quantization of the purely kinetic Hamiltonian of the
freely evolving classical particle between the boundaries.
Now for every j�j<�, there exists a self-adjoint mo-
mentum operator given by the operator p� � �i �h@q
whose domain consists of those vectors ��q� in H such
that

R
j�0�q�j2dq <1, satisfying the boundary condition

���l�� e�2i���l�. With p� self-adjoint, the kinetic en-
ergy operator K� � 1

2� p
2
� is consequently self-adjoint.

Thus the Hamiltonian is purely kinetic, i.e., H� � K�.
The momentum and the Hamiltonian then commute and
have the common set of plane wave eigenvectors.

Now let us consider T for � � 0. Since q appears in first
power in T, T is an operator if the inverse of p� exists.
Since zero is not an eigenvalue of p�, the inverse p�1

�

exists, and is in fact bounded and self-adjoint. Then it
follows that, for every j�j<�, T is a bounded, symmet-
ric operator. Thus T is self-adjoint. For a given �, we
identify T with the operator T� � ���qp�1

� �

p�1
� q�2�1 derived from the formal operator T by replacing

p with p�. We shall refer to T� as the nonperiodic con-
fined time of arrival (CTOA) operator for a given j�j<�.
In coordinate representation, T� becomes the Fredholm
integral operator �T�’��q� �

R
l
�l T��q; q

0�’�q0�dq0, for
all ’�q� in H , where the kernel is given by

T��q; q
0� � ��

�q� q0�
4 �h sin�

�ei�H�q� q0� � e�i�H�q0 � q��;

(1)

in which H�q� q0� is the Heaviside function.
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For � � 0, we face a different problem. Because zero is
now an eigenvalue of the momentum operator p0, p�1

0
does not exist, and operator T is meaningless. But this
pathology can be rigorously treated by projecting p0 onto
the subspace orthogonal to its null subspace, as discussed
in [6]. Following [6], T corresponds to a compact, self-
adjoint integral operator T0 whose kernel is

T0�q;q0��
�
4i�h

�q�q0�sgn�q�q0��
�
4i�hl

�q2�q02�: (2)

We shall refer to this as the periodic CTOA operator.
With the above representation, one can show that H�

and T� form a canonical pair in a closed subspace of H
for every �. Moreover, the kernel T��q; q0� of T� is square
integrable, i.e.

R
l
�l

R
l
�l jT��q; q

0�j2dqdq0 <1. This
means that T� is compact: It has a complete set of (square
integrable) eigenfunctions and its spectrum is discrete.

For the � � 0; �2 CTOA operators, it can be shown that
to every positive integer n � 1; 2; . . . there is a pair of
eigenfunctions ’�

n;��q�, with equal magnitudes of eigen-
values and of opposite signs, i.e., ��n;� � ���n;�; the sign
indicates the sign of the eigenvalue. The number n corre-
sponds to the nth positive root rn of J�3=4�x�J�1=4�x� �
cot2�J3=4�x�J1=4�x� � 0, where J��x� is the Bessel func-
tion of the first kind. The eigenfunctions are given by

’�
n;��q� � Ane
irn�q

2=l2�
�
J
3=4;1=4

�
rn
q2

l2

�
�J�1=4�rn�

� cot�J3=4�rn�� �
2q

�����
rn

p

l
J
1=4;3=4

�
rn
q2

l2

�

	�J�3=4�rn� � cot�J1=4�rn��
�
; (3)

where J
�;��x� � x��J���x� 
 iJ��x��, and An is the nor-
malization constant. The corresponding eigenvalues are
��n;� � ���l2=4 �h�r�1

n . We shall call those that do not
vanish anywhere in ��l;�l� as nonnodal eigenfunctions;
otherwise, as nodal eigenfunctions. The nonnodal (nodal)
eigenfunctions correspond to those with even (odd) quan-
tum number n. A nodal is zero at some single point q0.

The eigenfunctions for T�=2 can be derived directly
from Eq. (3). In this case, the eigenfunctions bifurcate
into odd and even eigenfunctions. The even and nonnodal
eigenfunctions are ’�

s;�=2;e�q� � ’�
s;�=2�q�, with the ei-

genvalues given by ��s;�=2;e����l2=4�h�r�1
s , and the rs’s

are the positive roots of J�3=4�x� � 0, with s � 1; 2; . . . .
The odd and nodal eigenfunctions are ’�

u;�=2;o�q� �
’�
u;�=2�q�, with the eigenvalues given by ��u;�=2;o �

���l2=4 �h�r�1
u , and the ru’s are the positive roots of

J�1=4�x� � 0, with u � 1; 2; . . . .
The eigenfunctions of T0 are likewise either even or

odd. The even and nonnodal eigenfunctions are given by

’�
s;0;e�q� � Bse


i�q2=l2�rsJ
3=4;1=4

�
q2

l2
rs

�
�

4Bse
irsJ1=4�rs�

�4rs�
1=4

where Bs is the normalization constant. The correspond-
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ing eigenvalues are ��n;0 � ���l2=4 �h�r�1
s , where the rs’s

are roots of the equation J�3=4�x� �
2
3 J5=4�x� �

1
x J1=4�x� � 0, with s � 1; 2; . . . . The odd and nodal eigen-
functions ’�

u;0;o�q�, together with their corresponding
eigenvalues, coincide with those of ’�

u;�=2;o�q�.
Now we turn to the dynamics of the above eigenfunc-

tions. Using symmetry arguments, it can be established
that the negative eigenvalue-eigenfunctions have exactly
the same dynamics as those of the positive eigenvalue-
eigenfunctions in the time reversed direction. It is then
sufficient for us to consider in detail the dynamical
behaviors of the positive eigenvalue-eigenfunctions. Our
analysis is based on the numerical evaluation of the
evolution law ’�t� � e�iH�t= �h’�0� in energy representa-
tion. All statements below are within numerical accuracy.

Figure 1(a) shows the general features of the nonnodal
eigenfunctions for every �. The probability density
j’�

n;��q; t�j2 collapses with nonvanishing width at the
origin, obtaining its maximum value there at the time
equal to the eigenvalue ��n;�. Moreover, the variance of the
position operator in the eigenfunction ’�

n;��q; t�,
"2
’n;��t� � h’�

n;��t�jq2j’�
n;��t�i � h’�

n;��t�jqj’�
n;��t�i2, is

minimum at the eigenvalue ��n;�. On the other hand,
Fig. 1(b) shows the general features of an evolving nodal
eigenfunction. The probability density of a nodal eigen-
function collapses towards the origin, its zero being at the
origin at the eigenvalue, i.e. j’�

n;��0; �
�
n;��j

2 � 0. In con-
trast to nonnodals with one peak at the origin, nodals
evolve to have two peaks approaching the origin. In both
cases, the minimum variance of each eigenfunction
asymptotically decreases as n�v for some 1< v< 2.
The eigenfunctions then become arbitrarily localized at
the origin at their eigenvalues for arbitrarily large n.

The eigenfunctions for � � 0; �2 , nonnodal or nodal,
are nonparity eigenfunctions so that they exhibit asym-
metry in their probability densities. For these eigenfunc-
tions, the expectation value of the position operator with
respect to them, i.e. hq�t�i’n;� � h’�

n;��t�jqj’�
n;��t�i, fol-

lows the classical trajectory, at least in the time interval
0 � t � ��n;�, and assumes the value zero at the eigenvalue
��n;� [8]. It can be established that these nonparity eigen-
functions are the quantum analogues of the classical case
FIG. 1 (color online). The n � 20 (a) and n � 21 (b) evolved
probability densities for � � 0:01, with �h � l � m � 1. Both
unitarily collapse at the origin at their respective eigenvalues,
0.0081 and 0.0079.
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where the initial position and momentum are nonvanish-
ing. Figure 2 shows the general features of the position
expectation value and variance as a function of time for
nonparity eigenfunctions. On the other hand, the expec-
tation value of the position and momentum operators in
the eigenfunctions for � � 0; �2 vanishes. This shows that
the T��0;�=2 CTOA-operators are quantizations of the
classically indeterminate case where the initial position
and momentum are vanishing.

Our numerical results then strongly support the follow-
ing interpretation for the confined-TOA eigenfunctions
and their corresponding eigenvalues: A CTOA eigenfunc-
tion is a state that evolves to unitarily collapse or to arrive
at the origin at its eigenvalue along a classical trajectory,
i.e., a state in which the events of the centroid being at the
origin and the position distribution width being minimum
occur at the same instant of time equal to the eigenvalue,
with the centroid following the classical trajectory. But
there is one thing more fundamental about these eigen-
functions—they are purely geometrical. The parameters
of the eigenfunctions are only l and �, which are geo-
metrical in origin: l determines the volume of the con-
figuration space; �, the translation property. In particular,
they do not depend on �h and on the mass� of the particle;
only the eigenvalues depend on them. This means that the
CTOA eigenfunctions are universal, applying to all mas-
0 0.02 0.04 0.06 0.08 0.1 0.12
0
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(b) time

FIG. 2. (a) The expectation value of the position operator for
n � 2 (dashed line), n � 6 (dotted line), and n � 20 (solid
line) eigenfunctions. They cross the origin at the respective
eigenvalues of the eigenfunctions, 0.0899, 0.0276, and 0.0081.
(b) The variances "2�t� for the same eigenfunctions as a
function of time. Their variances obtain their minimum values
at their respective eigenvalues. The parameters are the same as
in Fig. 1.
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sive particles. On first thought this is unexpected, but it
may in fact be a physical necessity. In classical mechan-
ics, the initial position of the particle can be chosen
independent of its mass; the choice of the initial position
is only dictated by the geometry of the configuration
space, i.e., where the particle is only possible to place.
And so it may be in quantum mechanics. This is reflected
in the pure geometric nature of the CTOA eigenfunctions
that assumes the initial ‘‘position’’ of the quantum parti-
cle, which is everywhere at once in the entire length 2l.
We point out that the eigenfunctions and eigenvalues of
the CTOA-operators are tied with the dynamics of the
system; hence, they acquire interpretation independent
from the quantum measurement postulate. Moreover,
the discreteness and boundedness of the eigenvalues in-
dicate that covariance, which implies the eigenvalues of a
time operator to be the entire real line, is not necessary
for a time operator to be meaningful.

Our results suggest introducing the concept of ideal
time of arrival states in a given Hilbert H� over some
configuration space �, and rephrasing the time of arrival
problem in terms of these states. For a fixed initial time
t0 � 0, let us define the subspace H x of H� character-
ized by the point x interior to �. A vector ’ in H� is in
Hx if (a) there exists a time � > 0 such that "2

’���<"2
’�t�

for all t � �, if (b) hq���i’ � x, if (c) hq�t�i’ follows the
classical trajectory at least within the time interval 0 �
t � �, and if (d) ’ is purely geometrical. We refer to these
states as the ideal time of arrival states of the system H�

with respect to the driving Hamiltonian H, and the asso-
ciated times f�g as their respective times of arrivals at the
point x. If there is perfect recurrence, then we refer to � as
the first arrival time. Now we can pose the problem:
Given the system H� driven by the Hamiltonian H
and given a point x interior to �, what are the ideal
time of arrival states H x and their corresponding arrival
times? Because the wave function has a definite trajectory
dictated by the Schrödinger equation in the Hilbert space,
this is a well defined quantum mechanical problem.

And this problem may or may not have a solution
depending on the given H� and H. The confined time
of arrival problem we have considered here is a bench-
mark problem having a solution in the form of the stan-
dard quantum mechanical eigenvalue problem of the
quantized classical time of arrival. However, the solution
we have obtained here need not be the only solution
because other means of quantizing the classical time of
arrival may lead to a different set of solutions. On the
other hand, the unconfined time of arrival problem is a
benchmark problem that does not possess a solution in the
form of an eigenvalue problem of the quantized classical
time of arrival—the eigenfunctions are nonsquare inte-
grable and nongeometrical because of their dependence
on the mass of the particle [7]. It is of fundamental
significance to understand why these two related prob-
lems have divergent characteristics. An understanding
180406-4
may lead us to a deeper insight into the quantum-time
problem, and into the foundations of quantum mechanics
itself. The confined quantum time of arrival problem has
already taught us one lesson—quantum mechanics is not
at all inept at addressing the quantum aspects of time if
only we knew what question to ask.
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