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All optical techniques used to probe the properties of Bose-Einstein condensates have been based on
dispersion and absorption that can be described by a two-level atom. Both phenomena lead to
spontaneous emission that is destructive at the low energies involved with ultracold atomic systems.
Recently, both were shown to lead to the same limit to the signal to noise ratio for a given destruction.
We develop a new method for calculating the phase shift of a laser beam and show that no single-pass
optical technique using classical light and a three-level atom can exceed this limit. This puts significant
restrictions on potential nondestructive measurement schemes.
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Introduction—The advent of modern cooling tech-
niques has led to the creation of ultracold atomic samples
in which the recoil of a single photon has a significant
effect on the motional state of the system. Laser cooling,
and more recently evaporative cooling, have allowed the
creation of a Bose-Einstein condensate (BEC) of weakly
interacting gases in which a large number of atoms enter
the ground state of the system, forming a large, coherent
matter wave [1]. Observation and control of the motional
states of these atoms requires a detection method that
does not involve spontaneous photon recoil.

Previously all ground state Bose-Einstein condensates
have been detected via optical methods, with photon
absorption providing a simple, though clearly destructive,
measure of the atomic density and the phase shift of a
laser beam providing a less destructive measure under
some circumstances [2]. Both methods are based on
physics that can be described by the two-level atom. It
was recently shown in the limit of optically thin samples,
that absorption and phase shift measurements have equal
sensitivity for a given level of destruction, and that the
signal to noise ratio (SNR) in this limit is a function of
destruction (spontaneous emission rate) and bandwidth
only [3,4]. This defines a hard limit on the SNR achiev-
able from any single-pass technique based on the two-
level atom and classical light beams. Using resonant
interferometry improves the SNR by a factor of the
square root of the finesse of the system [3]. Using
squeezed light improves the SNR by a factor of the
squeezing. These methods enhance the SNR of the mea-
surement [5], but are so technically challenging that they
would only be worth pursuing if there were no better
method. This Letter addresses the question: Can a large
phase shift be generated without a correspondingly high
spontaneous emission rate? If so, the detection limit for a
two-level atom can be avoided.

It is known that correctly prepared three-level systems
in the lambda configuration allow a weak probe beam to
experience a nonzero phase shift without any absorption,
suggesting that manipulation of coherences in a three-
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level system might provide a less destructive detection
method [6,7]. In this Letter, we show that this is not the
case, and that no other arbitrarily nondestructive detec-
tion can be generated with a three-level system.

The two-level limit—The SNR for a purely shot-noise
limited measurement of a phase A¢ is limited by the
temporal and spatial bandwidth, detector efficiency n and
the strength of the electric field in the interferometer:

SNR = |- |A¢| (1)
1)
where P is the power in the laser, w is the frequency of the
laser, and B is the temporal bandwidth of the measure-
ment [3]. Even reaching this shot-noise limit can be
experimentally challenging, and it can only be improved
by using nonclassical light sources or resonant interfer-
ometry. In the far off-resonant limit the phase shift
imparted on a laser beam by an atomic cloud is equal to
noy

A= -1 @)
where 7 is the column density of the atomic cloud, o =
67/k? is the single atom cross section, vy is the sponta-
neous emission rate of the excited state and A is the
detuning from resonance [2]. In this limit the off-
diagonal element of the atomic density matrix p,, is
given by Re{p,,} = —Q/(24), giving:

Ap =5 Refpeg) 3)
where () is the Rabi frequency of the laser field. This
second version is in fact true in general, as we will show
in Eq. (17) later in this Letter. In this off-resonance limit,
Egs. (1) and (3) combine to give a SNR that contains only
atomic parameters, and the square root of the excited

state population, P, = A&Zz :

i |mAovyP,
NR = —, [ ——— 4
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where A is the area of the atomic cloud that was sampled—
essentially the spatial bandwidth of the measurement. As
the excited state population drives the heating due to
spontaneous emission, this unavoidable link between
the sensitivity of the measurement and the excited state
population produces a fundamental limit to nondestruc-
tive detection using this technique. The difficulty of
gaining spatial information from cavity-based interfer-
ometers and using squeezed beams to improve interfero-
metric measurements means that the most attractive way
of beating this limit would be to find a way to obtain a
greater phase shift for a given excited state population.

Detection with three levels.—When an excited state is
coupled to two ground states by a single laser, and a
coherence between those states can be generated, then it
is possible to generate instantaneously a high phase shift
with zero absorption of a probe beam (see, for example,
Sec. 7.5 in Ref. [7]). The lack of absorption occurs due to a
destructive interference between the two allowable tran-
sitions. Unfortunately, a finite phase shift on a laser with
zero absorption of that laser does not necessarily mean
that there is no excited state population. It only means that
to first order the excited state population is not changed
by the probe beam. In more complicated systems, a laser
can have zero absorption while the atom has nonzero
spontaneous emission by absorbing other beams. In terms
of nondestructive optical detection, the relevant question
to ask is not whether a finite phase shift can exist without
absorption, but whether it can coexist without excited
state population.

It is certainly possible to obtain any required coherence
between the ground states in a three-level system without
excited state population. One eigenstate of the system in
the presence of two laser beams is a linear combination of
only the two ground states. Atoms initially in one of the
ground states can be moved into this dark state and back
again by having the two lasers sweeping spatially or
temporally across the atoms such that the initially unoc-
cupied ground state and the excited state are coupled first
and last. If the laser intensities change slowly enough,
then by the adiabatic theorem, the system will remain in
the dark state, and the atoms will be left undisturbed.
This proposal certainly satisfies the nondestructive crite-
rion of detection, but as a detection scheme it has one
critical flaw. The phase shift on both laser beams can be
shown to be zero.

We will first examine the phase shift using standard
methods. When the response of the atoms is linear in the
electric field, the phase shift and absorption of the field is
directly related to the real and imaginary parts of the
susceptibility y, as the refractive index is given by n?> =
1 + y. Here we use the refractive index and susceptibility
normalized to the effect of a single atom. The real part of
the refractive index is in turn simply related to the phase
shift experienced by the probe laser:

A¢ = [Re(n) — 1|wii/c (5)
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where 7i is the column density of the sample, and is
required here to include the effect of all the atoms in
the laser beam. The susceptibility can be written in terms
of the field strength and the atomic coherences [7]:

2
X = (dbapab + dcapac) (6)
605

where a is the excited state, b and c are the ground states,
d;; is the dipole moment between states i and j, £ is the
electric field, and p is the atomic density matrix in the
rotating frame. This equation can be combined with
Eq. (5) to show that
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where in successive lines we have used Cauchy’s inequal-
ity, the property of density matrices that |p,»j|2 = piPjj
and identified p,, with the excited state population P, for
this system. We have used the normal notation for the Rabi
frequencies of the laser. This relationship between an
upper bound for the phase shift and the excited state
population is the reason that this system cannot be used
for nondestructive detection. The shot-noise limited mea-
surement of this phase shift using Eq. (1) is

AoP,
’7 e (¥as + ¥ad) ®)

This shows that the measurement cannot be made
arbitrarily sensitive for a given spontaneous emission
rate. The similarity of this equation to the two-level limit
(4) is due to the fact that the phase shift is coming from
the coherences between the excited state and the ground
states, as seen in Eq. (6). When these two terms have equal
and opposite imaginary part then there is no absorption of
the beam, but in order to have no excited state they must
each be identically zero, as p,; must be zero for any state j
if p,, = 0. Thus, if there is no excited state the suscep-
tibility must be zero, and there is no phase shift on the
laser beam. It is easy to generalize this result to produce
an equivalent limit for any system where the response of
the system to the optical field can be written in terms of a
linear susceptibility.

Nonperturbative phase shift in multilevel systems.—
The above analysis is not the last word on nondestructive
detection with these systems, as it requires the system
response to be described by a linear susceptibility. This
leaves the possibility that nondestructive detection can be
achieved when there is a highly nonlinear susceptibility.
It is possible to use a higher order of perturbation theory,
for example, assuming that the polarization responds
quadratically to the electric field, P = €,(x& + x2&2),
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but this approach leads to very complicated models, and is
still not a fully general result.

By identifying the physical origin of the phase shift on
a laser beam, we show that it is possible to calculate it for
a nonperturbative system. Rather than using Maxwell’s
equations and assumptions about the polarizability of the
atoms, we note that the phase shift of the laser is inti-
mately related to the light shifts experienced by the
atomic levels during their interaction [8]. This relation-
ship is greatly simplified where we are only interested in
atomic dynamics with low rates of spontaneous emission,
as required for nondestructive detection. In this case, the
evolution is trivial in terms of the eigenstates of the
coherent part of the evolution. Although this is almost
identical to a perturbative approximation for two-level
systems, it is conceivable that multilevel systems may
have nonlinear effects with negligible spontaneous emis-
sion. Our method would be less suitable for dealing with
nonlinear effects that were accompanied by significant
spontaneous emission, but these situations are clearly not
candidates for nondestructive detection.

The interaction picture Hamiltonian for a laser coupled
to a two-level atom, in the rotating-wave approximation,
is

H, = hile)el + g(atlg)el + adj.) ©)]

where A is the detuning from resonance, d is the annihi-

lation operator for the laser mode, g = d 2h—“’ is the
eV

coupling constant for the transition, w is the laser fre-
quency, d is the dipole moment, and V is the quantisation
volume. This system couples the excited state with n — 1
photons in the optical field to the ground state with n
photons, forming a series of isolated submanifolds
{lg, n), le, n — 1)}. The laser must be far off-resonance
to avoid high spontaneous emission rates. In this case
the two eigenstates are a nearly pure excited state |+,) =
le,n — 1) and a nearly pure ground state |—,) = |g, n).
Thus, if an atom starts in the ground state |V;) =
> .calg, n), where ¢, are the coefficients of the photon
number modes, then a good approximation to the state
after the atom has interacted with the laser is

|Wtina) = ch|g, nyeW/MAE,l/c
= |g> ® (ch|n>€_(i/ﬁ)AEnl/C> (10)
n

where AE, is the light shift of |—,) and I/c is the

interaction time. To compare with (2), we note that for
. . . . 2

large detuning the light shift is AE, = — lghlA”.

Substituting this into Eq. (10) and multiplying by the

number of atoms in the quantisation volume, we find that:

W) = > calg, nyelitior/4dn]

=lge (S, mems) - an
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This is exactly the form for a light field that has experi-
enced a phase shift of

noy

4A 7 (12)
which is easily seen when the coefficients ¢, correspond
to those of a coherent state |a), and the total state can be
rewritten in the form | W) = |g) ® |ae *2%). This re-
sult is identical to Eq. (2), but does not involve assump-
tions about the polarization of the atoms. The large
detuning limit was used to compare the results with the
previous method, but the only necessary assumption was
that of negligible spontaneous emission, which is already
required for nondestructive detection.

The interaction picture Hamiltonian for an excited
atomic state |e) coupled by two lasers to two ground
states |g;) and | g,), in the rotating-wave approximation, is

Hs = hAleXel + 18lg )X gal + (g1d,T1g el
+ 82851 go)el + adj.) (13)

Ap =

where A is the detuning of the first laser from resonance,
0 is the two-photon detuning, &; is the annihilation

: fw; .
operator for the jth laser mode, g; = d; ﬁ is the cou-

pling constant for the transition from |e) to |g;), and d; is
the dipole moment of that transition. This system couples
the states |g;, n, m), le,n — 1, m) and |g,, n — 1, m + 1),
where the three labels are the atomic state and number of
photons in each laser mode, respectively.

In the nontrivial case where both laser fields are non-
zero, neither of the two ground states are approximately
eigenstates. There is an eigenstate |QD) of the system that
is close to a linear combination of the two ground states,
and in principle the atoms can be moved from either
ground state into this quasidark state in a reversible
manner, as described above. The excited state component
of this state is zero for two-photon resonance (6 = 0),
where it is truly a dark state, but the phase shift on each
laser beam 1is also zero in this instance. We must therefore
find the phase shift for finite values of 6 in order to
determine whether this system can produce a large phase
shift for a given excited state population, and therefore be
used to provide a more sensitive nondestructive detection
method. As we will eventually show that this is impos-
sible, it is not necessary to consider possible imperfec-
tions in the state preparation process that would only
make our conclusion stronger.

The initial state of the system must be |[¥;) =
> umCndm|OD, n, m) if the spontaneous emission rate is
going to be negligible, so the interaction of the light and
the atoms must produce the state

|q’final> — chdleD, n, m>e—(i/ﬁ)<QD,n,m|H3|QD,n,m)l/c'
n,m

(14)
This does not necessarily correspond to a phase shift of
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the two laser beams and an overall phase rotation of the
entire state, which would only be the case for

w = ¢y + ¢ n + ¢p,m. Any higher order
function of the two-photon numbers would imply the
existence of correlations between the beams. To the extent
that a phase shift A¢; exists for the jth laser beam, it is

therefore given by

o(Hs) |

an; hc

Ad’jlper atom (15)
where n j is the photon number of the jth beam, and the
derivative is evaluated at the mean photon numbers for all
the beams. The derivative of the dressed state eigenvalue
can be found from first order perturbation theory using
the Hellman-Feynman theorem [9]:

HH3) g 1
d(g; /1)) 2 /m; hc

= ((g;Xel + lexg;D) 2ﬁiil/rT
J

Relpeg ) (16)

Ad’jlper atom

24,

where o; and 7; are the cross section and spontaneous
emission rate for the transition, and ) = 2gj\/’n_j/ﬁ is
the usual definition of the Rabi frequency. Multiplying by
the total number of atoms in the quantisation volume, we
find the total phase shift on the laser is given by

A% =3,

Re{p,, } (17)

This agrees completely with Eq. (3) for the two-level
case, and generates the same sensitivity limit as shown
in (4).

If only one laser is used on both transitions, as we
described above using the susceptibility method, then
we can follow this argument precisely, identifying the
two field operators @; and d, in Eq. (13). By an identical
argument, we find that

o(H) 1
AQi)lper atom W E
= 3 (g el + lexg D=L
= / 7 2he\n
= 3 SvilRelp) (18)
j=12 J

This leads directly to the upper bound for the phase shift
shown in (7) and therefore the sensitivity limit shown in
Eq. (8). The difference is that this result requires no
approximations apart from the requirement that there is
minimal spontaneous emission. Together, the limits (4)
and (8) cover all possibilities for using a three-level
scheme for nondestructive detection of atoms, so we can
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conclude that there are no advantages to such schemes
over two-level detection techniques.

Conclusions.—For a two-level atom, the SNR for a
quantum noise limited measurement of the column den-
sity, either via absorption or phase shift in the thin cloud
limit, depends only on destruction (spontaneous emission
rate) and bandwidth. We have shown that the use of any
combination of coherences between levels in a three-level
atom will not improve the SNR for such a measurement.
Quasidark states can exhibit phase shifts that change very
quickly with detuning, but any large phase shift on either
laser is always associated with a large total excited state
population and accompanying spontaneous emission.
Although this result is restricted to a three-level atom,
the proof can be generalized to any minimally destructive
detection scheme based on any number of atomic levels
interacting with any number of lasers, and this proof will
appear in a forthcoming paper.

Although squeezed states of light or multipass inter-
ferometry are experimentally challenging for (at present)
moderate gains in the SNR, they are the only ways we
have found to improve on the single-pass limit imposed
by the two-level atom using classical light. As a conse-
quence, it is important that both techniques be developed.
The only alternative is to investigate nonoptical detection.
Sensitive cryogenic detectors such as SQUIDS make this
an interesting possibility for any atomic species with
nonzero spin in a cryogenic environment, such as atomic
hydrogen.
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