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New Class of Level Statistics in Correlated Disordered Chains
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We study the properties of the level statistics of 1D disordered systems with long-range spatial
correlations. We find a threshold value in the degree of correlations below which in the limit of large
system size the level statistics follows a Poisson distribution (as expected for 1D uncorrelated-
disordered systems), and above which the level statistics is described by a new class of distribution
functions. At the threshold, we find that with increasing system size, the standard deviation of the
function describing the level statistics converges to the standard deviation of the Poissonian distribution
as a power law. Above the threshold we find that the level statistics is characterized by different
functional forms for different degrees of correlations.
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Investigating statistical properties of the energy spec-
trum and the behavior of the level statistics proved to be a
useful approach to study electronic properties of disor-
dered systems [1–3]. In 3D disordered systems, the
Anderson transition between metallic and insulating
phase is associated with a transition in the level statistics
distribution from a Wigner-Dyson form to Poisson distri-
bution [4,5]. In 1D disordered systems, for any degree of
disorder, the level statistics is described by the Poisson
distribution in the limit of large system size correspond-
ing to electronic localization and insulating behavior [6].

Recently, it has been demonstrated numerically that
introducing long-range correlations in the spatial order of
atoms with different energies in a chain can lead to
electronic delocalization [7], creating an interesting de-
bate [8]. Further, it has been shown that there is a
localization-delocalization transition at a critical value
of the degree of correlations imposed on the disorder in
the system, and later works extended these results to other
models [9–12]. Also, this type of transition can be found
in quasiperiodic systems, as the Aubrey-Andre model and
other models[13], indicating the importance of some type
of ordering. These theoretical findings are supported also
by experimental results showing delocalization and elec-
tronic transport driven by extended states in correlated-
disordered GaAs=Ga0:7Al0:3 superlattices [14]. Recently, a
metal-insulator transition has been reported in 2D
correlated-disordered systems [15].

Here we hypothesize that, as the localization properties
of the electronic states in a disordered system are affected
by the degree of spatial correlations [7,12], the properties
of the level statistics of the energy spectrum of such
correlated-disordered systems could also change.
Specifically, we investigate how the functional form of
the distribution describing the level statics is affected by
the degree of correlations introduced in the system. We
demonstrate that the Poissonian form describing the level
statistics in disordered 1D systems in the thermodynamic
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limit is preserved even when a certain degree of spatial
correlations is introduced. Further, we find a critical
threshold for the degree of correlations above which in
the thermodynamic limit there is a transition to a differ-
ent class of distribution functions for the level statistics.
We consider systems without electronic interactions,
which may also influence the properties of the level
statistics [16] in addition to the correlations in the
disorder.

We consider the standard 1D tight-binding Hamil-
tonian with nearest-neighbor interaction

H �
X
i

�ijiihij �
X
hi;ji
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where V is the coupling energy and i ranges from 1 to N,
where N is the system size. To fix the energy scale, we
choose V � 1. In the case of uncorrelated disorder, the
site energies f�ig are randomly drawn from a certain
probability distribution, commonly a box (uniform) dis-
tribution or a Gaussian. This is equivalent to consider the
series of site energies as white noise. In contrast, for
systems with correlated disorder, we introduce spatial
long-range correlations in the series of site energies f�ig,
so that their sequence describes the trace of a fractional
Brownian motion. To this end, we obtain the site energies
using the inverse Fourier transform
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where k are N=2 random phases uniformly distributed
in the interval 	0; 2�
 [7,17,18]. Thus, by construction, the
power spectrum of the series f�ig is of the type 1=k�. By
choosing different values for the exponent �, we generate
series of site energies with different degrees of spatial
correlations: for � � 0, we have pure disorder (white
noise), �< 0 corresponds to anticorrelations, and �> 0
represents positive correlations in the series of site ener-
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FIG. 1. (a) Log-log plot of �̂ as a function of the system size
N for different values of the correlation exponent �. Inset:
same dependence in linear scales. Solid lines represent fits with
Eqs. (6)–(8). (b) Same as in (a) for � close to �c.
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gies f�ig. In our study, we consider only systems with
positive correlations (� � 0).

Once the series f�ig is obtained, we normalize it to zero
mean and unit standard deviation, thus fixing the width of
the site energy distribution to unity. This is equivalent to
keeping the ‘‘traditional disorder’’ of the system fixed,
since the standard deviation of the distribution of f�ig
quantifies the variety in the site energies of the atoms
forming the chain, while their spatial order is quantified
by the exponent �. Note that for uncorrelated-disordered
systems (� � 0), the disorder is quantified by the stan-
dard deviation in the case of site energies randomly drawn
from a Gaussian distribution, or by the width of the box in
the case of a box distribution.

After the normalization of the site energies, we diago-
nalize the Hamiltonian (1) to obtain the energy spectrum
fEig, where E1 <E2 < . . .<EN . For any system size N
and any value of the correlation exponent � in our nu-
merical calculations, we diagonalize 224=N realizations
of the Hamiltonian (1). Thus we have a sufficiently large
ensemble of realizations to avoid statistical fluctuations in
our results, while we consider the same number of 224

energy levels for any N.
Once the energy spectrum is obtained, we study the

distribution of the spacings between consecutive energy
levels. Since the density of energy levels is not constant
throughout the energy band, and thus the local average
energy spacing is not constant either, one cannot compare
fluctuations in the spacings obtained from different re-
gions of the band. To avoid this problem, we normalize to
unity the local average energy spacing from different
regions of the energy band, thus effectively normalizing
all energy spacings to the same scale. This ‘‘unfolding’’ of
the energy spectrum is a procedure commonly used in the
study of level statistics of disordered systems [19]. In
brief, the unfolding procedure consists of the following
steps: we first introduce the integrated density of energy
levels g�E defined as

g�Ei � i: (3)

Thus, g�Ei is the number of energy levels below the
energy Ei. Second, we fit g�E using a polynomial func-
tion. This fit represents the averaged integrated density of
energy levels g�E. Next, the unfolded energy spectrum
f"ig is obtained from the map

"i � g�Ei: (4)

To avoid unfolding problems related to irregular be-
havior of g�E at the borders of the energy band, we
consider only energy levels from the central region of
the band. Specifically for a system of size N, we obtain
N energy levels [eigenvalues of the Hamiltonian (1)], and
we consider the central part of the spectrum fEig, where
i 2 	N=3� 1; 2N=3
. We obtain the averaged integrated
density of levels g�E by fitting g�E with a cubic poly-
nomial in the interval 	EN=3�1; E2N=3
.
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Using the unfolded spectrum f"ig, we study the nor-
malized distribution function of energy spacings P�s,
where si � "i�1 � "i. From Eqs. (3) and (4), we have
that the average level spacing is hsi � 1.

For the classical cases of 1D and 2D uncorrelated-
disordered systems in the limit of large system size,
P�s follows the Poisson distribution

PP�s � e�s: (5)

A Poisson distribution for P�s indicates strong clustering
between energy levels because it reaches maximum when
s ! 0 (Fig. 4).

In our analysis, we characterize P�s using its standard
deviation �. For the classical case of Poissonian form for
P�s (5), we have � � �P � 1. For convenience, we study
the behavior of �̂ � 1� �. In Fig. 1 we show �̂ as a
function of the system size N for different values of the
correlation exponent �. For uncorrelated disorder (� � 0)
and for large N, �̂ ! 0 (or equivalently � ! 1), indicat-
ing Poissonian behavior for P�s as expected for 1D
disordered systems [6].

Introducing a certain degree of spatial correlations
(�> 0) in the system, we find that in the limit of large
N, the level statistics exhibits again Poissonian behavior
[�̂ ! 0, Fig. 1(a)], indicating energy level clustering and
electronic localization. This finding indicates that
Poissonian behavior in the level statistics exists even in
the presence of long-range correlations. However, we find
that the convergence of P�s to the Poisson distribution
176804-2
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FIG. 2. Dependence of �̂ on the correlation exponent � for
varied system size N. The solid line represents the behavior of
�̂ in the limit of N ! 1 (i.e., �̂1)—a phase transition from
Poissonian (�̂ � 0) to non-Poissonian (�̂ � 0) level statistics at
the critical value �c.
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with increasing N is much slower in the case of correlated
disorder (�> 0) compared to the case of uncorrelated
disorder (� � 0) (Figs. 1 and 2 ).

Increasing the strength of the long-range correlations,
we find a threshold value, a critical exponent �c, above
which the functional form of P�s does not converge to
Poisson distribution—i.e., �̂ does not converge to zero in
the limit of large N [Figs. 1(a) and 2]. At the critical value
�c, we find that for increasing N, the level statistics
converges very slowly to Poisson distribution and �̂ ! 0
as a power law [Fig. 1(b)].

We next investigate the functional dependence of �̂ on
the system size N for the three regimes: (i) �<�c; (ii)
� � �c; and (iii) �>�c. Based on simulations of vari-
ous systems sizes up to N � 217, we model the behavior of
�̂ using the following expressions:

�̂ � a1N
�b1�c1 logN��<�c; (6)

�̂ � a2N�b2�� � �c; (7)

�̂ � �̂1 � a3N
�b3��>�c; (8)

where all the parameters are positive and in general
depend on the correlation exponent �. To test the validity
of these expressions, we use the Levenberg-Mardquardt
(L-M) algorithm [20] to fit the data in Fig. 1(a) and 1(b)
and to estimate the optimal values of the parameters.
Although we have tried more expressions to fit the data,
those in Eqs. (6)–(8) are the best based on two criteria:
good description of data and less number of parameters.

We note that for �<�c, the behavior of �̂ vs N on a
log-log plot presents negative curvature [Fig. 1(a)], while
for � � �c, �̂ depends on N as a power law with a
negative slope, so that in both cases for N ! 1, �̂ ! 0
[Fig. 1(b)], indicating that in the thermodynamic limit
the level statistics is Poissonian. In contrast, for �>�c,
the dependence of �̂ on N has positive curvature
[Fig. 1(b)], indicating a decay slower than a power law.
We find that data are best modeled (with best fit based on
the L-M algorithm) as a power law with an additive
positive constant �̂1 such that �̂ � �̂1 for N ! 1 (8).
Thus our results suggest that for �>�c, in the thermo-
dynamic limit �̂ does not converge to zero, and that the
level statistics is not of Poissonian type.

To determine �c, we use the following procedure: (i)
starting from small values of � for which the dependence
of �̂ on N follows Eq. (6), we increase � and observe that
the fitting parameter c1 decreases, and for a given value of
� becomes zero, so that Eq. (6) is not valid anymore; (ii)
starting from large values of � for which �̂ follows
Eq. (8), we decrease � and observe that the fitting pa-
rameter �̂1 decreases, and for a given value of � becomes
zero, so that Eq. (8) is not valid anymore. We find that for
both (i) and (ii), the transitions occur at a critical value of
� � �c � 1:55� 0:05 (Figs. 1 and 2), where the behavior
of �̂ is described by Eq. (7).
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We next obtain a phase diagram of the properties of the
level statistics as a function of the degree of spatial
correlations in the system. We systematically investigate
the asymptotic behavior of �̂ in the limit of large system
size N as a function of the correlation exponent � (Fig. 2).
For a fixed system size N, we calculate how �̂ depends on
the spatial correlations choosing a dense set of � values.
We then repeat the calculations for increasing N. We find
that �̂ is an increasing function of �, and that for each
value of N, a relatively flat region at small � is followed
by a sharp increasing in �̂ for large � (Fig. 2). This
behavior becomes more pronounced with increasing N.
Further, we find that the flat region in �̂ extends to
intermediate values of � and rapidly approaches zero
with increasing N. This is in agreement with our finding
of level statistics of Poissonian type even in the presence
of a moderate degree of spatial correlations in the system
and with the predictions of Eqs. (6) and (7). In contrast,
for large values of �, the values of �̂ remain large and do
not decrease substantially with increasing the system size
N. Thus, we observe a transition in �̂ centered at inter-
mediate values of �, which becomes more abrupt with
176804-3
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increasing N. To extrapolate the behavior of the level
statistics in the thermodynamic limit and for large �,
we use Eq. (8), since for N ! 1, �̂ ! �̂1. We estimate
�̂1 for a dense set of large and decreasing values of �—
the solid thick line in Fig. 2, which sharply decreases to
�̂1 � 0 for � � �c � 1:55. This suggests a phase tran-
sition from a Poissonian behavior of the level statics
characterized by �̂1 � 0 for �<�c, indicating strong
clustering between energy levels, to a non-Poissonian
phase defined by �̂1 � 0 for �> �c. As �̂1 is a function
of �, this suggests that for any �> �c, a different level
statistics P�s is obtained. Thus we find a new class of
correlated-disordered systems characterized by energy
level repulsion, different values of �̂1, and different
distribution functions for the energy spacings P�s.

Similar conclusions can be drawn with the study of
�2�L, i.e., the variance of the number of levels in boxes
of length L in the unfolded spectrum. It is known that for
Poissonian behavior, �2�L is linear with L with slope 1.
We obtain this linear behavior for any �< �c (see the
case � � 1 in Fig. 3), indicating Poissonian behavior, in
agreement with our previous results. For �>�c, we
obtain a nonlinear and slow increasing of �2�L as a
function of L (slower for increasing �), indicating level
repulsion and non-Poissonian behavior, also in agreement
with our previous results, and with the behavior of the
P�s functions (see below).

In Fig. 4 we show P�s for several values of � and for
finite system size N � 216. We note that in the thermody-
namic limit of large N, the form of P�s may change.
However, this change is expected to be not significant,
since for N � 216, �̂� �̂1 ’ 0:005. In general, we obtain
that for �<�c, although there exists a moderate degree
of correlations in the system, P�s is exponential
(Poissonian) (see the case � � 1 in Fig. 4). When �>
�c, the Poissonian behavior is lost: as � departs from �c,
the functions P�s for low s decrease gradually, and
simultaneously, an increasing peak for increasing � ap-
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pears at s � hsi � 1, indicating strong level repulsion. For
extreme values of �, P�s for low s is very small, while
the peak at s � 1 becomes huge (see the case of � � 3 in
Fig. 4). This finding is consistent with the expectation that
extreme values of � correspond to an ordered system, for
which the level statistics is of the type P�s � ��s� 1.

In summary, we find that introducing spatial long-
range correlations in 1D disordered systems leads to a
transition from a Poissonian to a new class of functional
forms describing the level statistics in the thermodynamic
limit. Further, we find a critical value for the correlations
below which the level statistics exhibit Poissonian behav-
ior associated with energy level clustering, similar to the
one observed in uncorrelated-disordered systems. Above
this critical value, the system is characterized by level
repulsion. These findings may relate to previous reports on
localization-delocalization transition in the electronic
properties of 1D systems driven by spatial correlations
in the disorder [7]. In that work, the transition is detected
at � � 2>�c, where we already observe non-Poissonian
behavior, as expected in the extended regime.
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