
VOLUME 93, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S week ending
22 OCTOBER 2004
Spin Splitting Induced by Spin-Orbit Interaction in Chiral Nanotubes
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We show that chiral tubes present spin splitting at the Fermi level in the absence of a magnetic field,
whereas achiral tubes preserve spin degeneracy, as evidenced by tight-binding electronic structure
calculations with the inclusion of spin-orbit interaction. These remarkably different behaviors of chiral
and nonchiral nanotubes have a symmetry origin, which may provide a global explanation to recently
reported spin-dependent transport experiments which were in apparent contradiction.
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Carbon nanotubes (CNTs) constitute a new class of
mesoscopic 1D quantum systems [1]. Their unusual elec-
trical properties offer new possibilities for the design and
implementation of nanoelectronic devices. Scanned-
probe spectroscopy measurements in both single-wall
and multiwall nanotubes (NTs) agree overall with the
predictions of band structure calculations, which state
that NTs can either be metals or semiconductors depend-
ing on their diameter and chirality [2]. However, trans-
port experiments in CNTs have posed new open questions
that require an explanation going beyond the simplest
models [3–8]. For example, single-electron transport ex-
periments [5–8] have evidenced that the role of spin in
these quasi-1D systems might be crucial. Thus, CNTs
could play an important part in spin-electronic devices,
whose operation depends not only on the charge but also
on the spin of the conduction electrons. Nonetheless,
these transport experiments seem to lead to contradictory
results, giving support to the existence of different spin
ground states in CNTs. By analyzing the spin directions
of successive electrons entering a bundle of NTs at low
magnetic fields, the expected spin alternation was found
[5]. Such behavior was also found in carbon nanotube
quantum dots [6] and could be explained by a simple
shell-filling model. However, measurements performed
in isolated NTs showed that consecutive electrons could
have the same spin direction, indicating a possible spin
polarization of the NT [7]. These authors gave a phe-
nomenological explanation for the parallel spin (PS) se-
quences, assuming that the capacitance of the NT
depends on its many-body quantum state. Another pro-
posed mechanism to interpret this unexpected spin suc-
cession was the presence of a nonuniform external
potential along the tube axis [9]. Consecutive parallel
electrons were also reported in a later work on metallic
CNTs [8]. In this case a four-electron periodicity for
electron addition was observed compatible with a ground
state spin S � 1 at most. These results were understood by
employing a shell-filling model which incorporates ex-
change and Coulomb interactions.
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The process of electron transport involves the distri-
bution of incoming electron flux among the eigenstates of
the system, so the precise knowledge of the energy spec-
trum of CNTs is essential to understand quantum trans-
port. It is the aim of this Letter to show that chiral CNTs
can present spin-split states at the Fermi level in the
absence of a magnetic field, as found by electronic struc-
ture calculations including spin-orbit interactions. Spin
polarization is crucially dependent on the NT symmetry:
in chiral NTs spin-orbit (SO) interaction lifts the spin
degeneracy, while in achiral NTs, either armchair or
zigzag, spin degeneracy remains. The effects of SO cou-
pling have been previously studied in CNTs [10–12]. A
continuous k � p scheme based on a single pz orbital at
each C atom and neglecting curvature effects predicts that
for metallic NTs a small energy gap opens up, but spin
splitting is not present around the Fermi energy (EF) [10].
Band splitting induced by SO coupling has been obtained
considering surface curvature effects [11] and in electron
spin resonance spectra of achiral NTs derived by low-
energy field theory [12,13]. The inclusion of the full NT
lattice symmetry, absent in these previous works, turns
out to be essential for SO-coupling effects in chiral NTs.

We model the NT by the Slater-Koster [14] empirical
tight-binding (ETB) Hamiltonian including sp3 orbitals,
employing the Tománek-Louie parametrization for
graphite [15], so the actual discrete nature of the lattice
is taken into account. The NT unit cell is generated by
rolling up a portion of graphene layer, thus including
curvature effects. Although total energy calculations
give smaller radii for relaxed NTs, changes in the band
structure for the diameters here studied (d � 6 �A) are
negligible [16].

Spin-orbit interaction is caused by the coupling of the
spin of a moving electron with an electric field which acts
as a magnetic field in the rest frame of the electron. In a
crystalline environment the major internal contribution
arises from the electron orbital motion in the crystal
potential V, and thus its effects are related to the crystal
2004 The American Physical Society 176402-1



-2

-1

0

1

2

E
ne

rg
y(

eV
)

-1

0

1

E
ne

rg
y(

eV
)

Γ X Γ

Γ

X

ΓX X

(a) (b)

(c) (d)

FIG. 1. Band structure calculated around the Fermi level of
the achiral tubes: (5,5) armchair tube (a) without and (b) with
SO interaction; (9,0) zigzag tube (c) without and (d) with SO
interaction.
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symmetry. The SO-interaction term in the Hamiltonian is
HSO � �h

4mc2
��rV � p�, where � represents the Pauli ma-

trices and p the electron momentum. The relevant con-
tribution of the crystal potential is close to the atomic
cores, so assuming spherical symmetry, HSO � �L � S,
where the SO-coupling constant � depends on the atomic
orbital and L is the angular momentum of the electron.
Within the ETB framework, HSO interaction couples p
orbitals on the same atom, and � can be either greater or
smaller than the atomic value [17]. It was assumed long
ago [18] that the SO interaction in graphite was reduced
with respect to the value for atomic C; thus SO effects
have been customarily neglected in graphitelike materi-
als, even though recent measurements are lacking. Low
dimensionality, electron-electron interactions, and mag-
netic fields are shown to induce an enhancement of SO
coupling [19]. Therefore, it may turn out that spin-orbit
interactions in CNTs could be relevant due to their re-
duced dimensionality. Furthermore, the SO strength can
be controlled by a proper choice of gate potentials [20], as
was first proposed for semiconductor heterostructures.

It is our purpose to explore the symmetry dependence
of SO interaction in buckytubes, which are known to
appear in a variety of geometries and, consequently,
they present different symmetries. Calculations have
been done with a SO-coupling constant � � 0:2 eV for
the sake of clarity in the figures; however, its exact value
is not known. We have focused on primary metallic nano-
tubes, i.e., nanotubes which are predicted to be metallic if
curvature effects are neglected [21]. To this end, we have
calculated the band structure of four different NTs in-
cluding SO-interaction [22]. The selection regards the
diverse types of bands at EF. Neglecting curvature ef-
fects, all primary metallic tubes [23] present a band
crossing at the Fermi level. According to it, they can be
classified as two types: those that have this crossing at �
and those that have it at two thirds of the distance from �
to the zone boundary. We will refer to them as � metals
and 2=3 metals, respectively [24]. Armchair �n; n� nano-
tubes are 2=3 metals, while zigzag �n; 0� tubes (n � 3q, q
being an integer) are � metals [25]. For symmetry con-
siderations, one can see that the bands of any nanotube
are at most fourfold degenerate. Considering spin, the
bands crossing at EF in � metals are fourfold degenerate
at EF, whereas the bands that cross at EF in 2=3 metals are
only doubly degenerate.

First we focus on achiral NTs which possess inversion
symmetry: Figure 1 shows the band structures of an
armchair (5,5) tube [Figs. 1(a) and 1(b)] and a zigzag
(9,0) tube [Figs. 1(c) and 1(d) ] calculated around EF with
and without SO interaction. The (5,5) tube is a 2=3 metal,
so its bands around the Fermi level have only spin degen-
eracy [26]. Figures 1(a) and 1(b) clearly show that this
degeneracy is not lifted by SO interaction. However, even
though armchair tubes remain metallic after including
176402-2
curvature effects [Fig. 1(a)], the inclusion of SO interac-
tion leads to a small gap opening, barely seen in Fig. 1(b),
as predicted by Ando [10].

The zigzag (9,0) tube has been chosen as an example of
achiral � metal [27]. In Fig. 1(c) we can already see how
curvature effects open a small gap in the absence of SO
interactions. In Fig. 1(d) it is shown how the inclusion of
SO coupling partially removes the degeneracy but, as for
the (5,5) tube, the bands around EF are still twofold
degenerate because of spin.

On the other hand, chiral NTs do not have an inversion
center and possess spiral symmetry operations. We have
chosen the (7,1) and the (9,3) as examples of 2=3 and �
metals, respectively [28]. Curvature effects open a small
gap at the Fermi energy in both NTs, and slightly shift the
Fermi wave vector for the (9,3), which actually has its gap
at k � 0 value, as can be seen in Fig. 2(c). In contrast to
the results shown for armchair and zigzag NTs, SO in-
teraction lifts all degeneracies, even for states which are
only doubly degenerate in spin (see Fig. 2). Thus, SO
interaction produces an energy splitting between states
with different spin orientations in chiral nanotubes. In all
tubules the band crossing at EF is between energy bands
of different symmetry, then they respond differently to
the SO interaction. This is appreciable in Figs. 1 and 2
since the SO splitting is band dependent.

We have just shown that SO-related effects in NTs have
a fundamental symmetry dependence. Even though the
SO interaction partially lifts degeneracy in achiral NTs, it
176402-2
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FIG. 2. Same as Fig. 1 for the chiral tubes (7,1) (a),(b) and
(9,3) (c),(d).
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does not affect the spin degenerate states. This can be
understood as follows: Kramers’ theorem on time reversal
symmetry states that Ek;� � E�k;��, where Ek;� is the
energy of the eigenstate with wave vector k and spin �.
But if a crystal also has inversion symmetry, that is,
Ek;� � E�k;�, then Ek;� � Ek;��; i.e., spin degeneracy
cannot be removed. But for chiral tubes, because of the
lack of inversion symmetry, only the first condition
(Ek;" � E�k;#) holds; therefore spin degeneracy is not
allowed. This results in an asymmetry in momentum
space for the energy branches corresponding to up and
down electrons as illustrated in Fig. 3, where the spin-
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FIG. 3. SO spin-split dispersion relation for the chiral tube
(9,3), calculated around the Fermi level in the � region of the
Brillouin zone (BZ). Arrows indicate the spin polarization of
the bands.
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resolved dispersion relation for the (9,3) NT around EF is
represented, showing how electron velocities become de-
pendent on both the spin and the direction of the motion.

In Fig. 4 the spin-resolved density of states (DOS) at
kF for energies around the Fermi level, with and without
SO coupling, are compared for the (5,5) and the (7,1) NTs.
In the (5,5) a small gap opens with the SO interaction but
no spin splitting is present. Nevertheless, the states are no
longer spin eigenstates. The eigenfunctions (not shown
here), although with a dominant spin contribution, do not
correspond to pure spin states. Thus, as was pointed out
by Ando [10], spin scattering is induced even by spin-
independent scatterers and impurities can cause spin re-
laxation. The experimental determination of the SO-
induced gap could provide a way to estimate the SO-
interaction strength. On the other hand, in the chiral
(7,1) NT the SO interaction lifts the degeneracy producing
an energy splitting between states with different spin
orientation. The bands correspond to spin eigenstates.
The motion of electrons with spin up and spin down are
completely decoupled. Thus, there is not spin scattering
for scatterers having spin-independent potential. In fact,
an electron with spin up cannot be scattered into a state
with spin down and vice versa. This would explain the
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FIG. 4. Spin-resolved DOS at kF for (a) the (5,5) nanotube
and (b) the (7,1) nanotube, calculated with (solid line) and
without (dotted line) SO interaction.
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FIG. 5. Spin-resolved DOS for the (9,3) tube at k � 0:025
(solid line) and k � 0:0125 (dashed line) and schematic rep-
resentation of the sequential ordering of spin-states, consider-
ing either one or both k vectors (see text). Wave vector values
are given with respect to the BZ length.
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huge (�130 nm) spin-flip scattering length observed for
spin-polarized electrons injected into multiwall NT [4].

A finite-length NT has a series of discrete levels aris-
ing from the quantized allowed k values. This, along with
the SO-induced spin splitting, can lead to sequences of
discrete states with parallel spin. Such effect occurs in
chiral NTs at energies around a band gap and whenever
there are two bands close in energy with different sym-
metry, since they respond differently to the SO interac-
tion. To illustrate it, we show in Fig. 5 the sequence of
levels corresponding to one particular k value and that
obtained for two values, namely, k and k=2, which would
correspond to the first nonzero quantized ks appearing in
a tube of finite length L and 2L, respectively.

Although we have focused in metallic tubes, SO-
induced spin splitting is also present in chiral semicon-
ductor tubes, where SO-related effects are the same. In
summary, we have shown that SO interaction removes
spin degeneracy in chiral NTs due to the lack of inversion
symmetry of the crystal potential, while in achiral NTs
spin degeneracy is not lifted. Thus, SO interaction in
CNTs presents an intrinsic symmetry dependence. Our
results provide a new perspective to the interpretation of
spin-polarized transport experiments in CNTs.
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