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Experimental Evidence for a Zigzag Bifurcation in Bulk Lamellar Eutectic Growth
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We present real-time observations of the directional-solidification patterns of a transparent non-
faceted eutectic alloy (CBr4-C2Cl6) in bulk samples. The growth front of the two-phase solid is
observed from the top through the liquid and the glass wall of the container with a long-distance
microscope. We show that, in near-eutectic CBr4-C2Cl6 alloys, the upper stability limit of the stationary
lamellar patterns is due to a zigzag bifurcation, which occurs at an interlamellar spacing of about
0:85�m, where �m is the minimum-undercooling spacing. The zigzag patterns undergo a lamella
breakup instability leading to the creation of new lamellae at about 1:1�m. On the other hand, the
lower stability limit of the stationary patterns is due to the same instability as in thin samples, namely,
a lamella termination instability that occurs at about 0:7�m.
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FIG. 1. (a) Sketch of a stationary lamellar eutectic pattern;
�;�: eutectic crystal phases; z: axis of the thermal gradient,
and normal to the growth front. (b) Sketch of the experimental
setup; V: pulling velocity; 
0: tilt angle of the direction of
observation to the horizontal.
Nonlinear pattern formation in solidification is a ques-
tion of general interest in the physics of spatially extended
out-of-equilibrium systems [1]. Solidification patterns or
‘‘microstructures’’ are also the subject of active re-
searches in materials sciences [2]. One of the most fre-
quently studied examples is that of directionally solidified
(solidified at a fixed velocity V in an applied unidirec-
tional thermal gradient), nonfaceted binary eutectics
(two-component alloys presenting a miscibility gap in
the solid state). For thermodynamic reasons, the solid
that grows in this case is made of two phases (called �
and �) of different concentrations and crystal structures.
The exchange of solute between the two phases during
growth occurs by diffusion through the liquid. The pro-
portion of the two phases in the solid is fixed by mass
conservation, but their spatiotemporal arrangement along
the front is a problem of nonlinear pattern formation
[3,4]. It has been known for a long time that, within a
certain range of values of the alloy concentration and V,
the selected pattern is usually ‘‘lamellar’’ (periodic in
one direction) and stationary (Fig. 1). This type of pattern
(called ‘‘symmetrical’’ by contradistinction with the
symmetry-broken patterns [5,6]) has a wide existence
range as a function of the spacing � at fixed V [7].
However, the nature of the predominant instability modes
and the location of the instability thresholds on the �
scale are still largely open questions.

Most previous investigations of the stability of lamel-
lar eutectic patterns were restricted to one-dimensional
(1D) eutectic fronts. Quasi-1D fronts were obtained ex-
perimentally by using ‘‘thin’’ samples, i.e., samples of a
thickness comparable to � (on the order of 10 �m for V in
the �ms�1 range), in which the lamella plane is con-
strained to remain normal to the sample walls (but can
undergo rotations about the normal to the sample plane).
A transparent nonfaceted eutectic alloy (CBr4-C2Cl6)
was used, and the front was observed in real time through
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the wall of a glass container with a conventional optical
microscope and a direction of observation normal to the
wall [6]. These studies, in conjunction with numerical
simulations, have led to the complete quantitative deter-
mination of the stability diagram of 1D eutectic fronts of
CBr4-C2Cl6 as a function of �, V, and the alloy concen-
tration [8–10]. In fact, this diagram obeys the so-called
�V1=2 similarity law, meaning that the actual control
parameter of the instabilities is �V1=2, or, equivalently,
�=�m, where �m is the so-called minimum-undercooling
spacing, which is system dependent, and scales with V as
V�1=2 [7]. It was also shown numerically that the found
qualitative features of the stability diagram were com-
mon to all nonfaceted binary eutectics.

When we turn to lamellar eutectics in bulk samples, we
are faced with a new problem. In bulk samples, eutectic
lamellae are not aligned along the normal to the sample
walls—at least not quasi-instantaneously—contrary to
what occurs in thin samples. They can rotate about the
growth axis, and also break up, giving rise to topological
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FIG. 2. Top view of a symmetric lamellar eutectic pattern in a
350-�m-thick sample of a slightly hypereutectic CBr4-C2Cl6
alloy. V � 0:37 �ms�1. The sample was pulled at V �
0:5 �ms�1 for 4.5 h and then at 0:37 �ms�1 for 1.5 h.
Bright and dark stripes are � and � lamellae, respectively.
Horizontal width of the image: 860 �m. Average value of �:
0:82�m. Arrows: lamella terminations.
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defects such as lamella terminations and line defects
(domain boundaries and phase jumps). Moreover, numer-
ous experiments have shown that, in bulk samples, lamel-
lar patterns can disappear and be replaced by stationary
patterns consisting of hexagonal arrays of inclusions of
one phase embedded in the other (rodlike patterns) [7].
Thus, from the viewpoint of the phenomenological theo-
ries, 2D nonfaceted eutectic fronts can be characterized
by the fact that they have, at fixed V, two types (lamellar
and rodlike) of stationary patterns, which exist over
finite-width spacing ranges, and are degenerate in orien-
tation. These properties are shared by other 2D pattern-
forming systems, in particular, Rayleigh-Bénard convec-
tion [11,12]. It is thus natural to try to find out if 2D
lamellar eutectics exhibit the same primary mode of
instability as Rayleigh-Bénard convection rolls do,
namely, the zigzag instability. This question is currently
being studied numerically [13,14] but has not yet been
investigated experimentally.

In this Letter, we present real-time observations of 2D
lamellar eutectic fronts in bulk samples of CBr4-C2Cl6.
The experimental setup is sketched in Fig. 1. We used
300- or 350-�m-thick glass samples filled with a slightly
hypereutectic, well-purified alloy under a controlled at-
mosphere [15]. A thermal gradient of 100� 20 K cm�1

was installed between two isolated, temperature regu-
lated copper blocks. The samples were equipped with a
grain selector in order to grow single, or, at least, large,
weakly anisotropic eutectic grains [16,17]. These were
formed by using a procedure previously used in thin
samples and described in Ref. [18]. The observations
were performed in single-grain regions containing a
hundred pairs of lamellae, typically. We checked that
the isotherms were planar and perpendicular to z (to
within 1�) when the sample was at rest. However, a small
(< 6�) tilt of the isotherms about the x axis (thermal bias)
sometimes occurred during solidification. The presence of
convection flows with velocities of a few 10 �ms�1 was
also revealed by a lateral drift of small inert dust particles
floating in the liquid close to the front, though the system
is, in principle, stable against thermosolutal convection in
hypereutectic CBr4-C2Cl6 alloys—the liquid close to the
front is enriched in CBr4, which is denser than C2Cl6. We
did not detect any perturbation due to these flows in the
regions of the samples in which the observations were
performed.

The front was observed from the top through the liquid
and a lateral glass plate of the container. The contrast
arises from the differences of optical index between the
three transparent phases. A major difficulty was to sepa-
rate the image of the growth front from that of the under-
lying two-phase solid. We solved this problem by
choosing a dark-field method, in which the directions of
observation and lighting are both oblique, but different
from each other. We used a long-distance microscope
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(Questar QM100) with large working distance (15 cm)
and depth of field (’200 �m). The light source was made
of a halogen lamp and a linear bundle of optic fibers. The
images were captured with a video camera and then
digitized and filtered numerically for contrast enhance-
ment. The reduction of the image in the y direction due to
the oblique direction of observation was also corrected
numerically. We fixed the tilt angle of the direction of
observation at 50�, which corresponds approximately to
the minimum value (2.85) of the image reduction factor
along the y axis. [The existence of a minimum is due to
the refraction of the light at the liquid-(glass)-air inter-
face.] A corrected image of a quasistationary lamellar
pattern is shown in Fig. 2. A sharp, almost uniform,
optical contrast between (bright) � and (dark) � lamellae
is obtained. The shape of the front on a scale smaller than
� is not resolved, but this was not necessary for our
purpose.

We have performed solidification runs over long peri-
ods of time (several hours) for various values of the alloy
concentration and V. Most generally, the pattern obtained
at the end of the initial transient (about 10 min after the
onset) was quite complex and showed no preferred ori-
entation of the lamella plane, except near the sample
walls, where the no-flux condition forces the lamellae to
be normal to the walls (Fig. 3). In general, a pronounced
alignment normal to the sample walls was obtained after
a long time through a progressive elimination of the
topological defects and a slow propagation of the wall
effect across the sample. The dynamics of this relaxation
toward a stationary state will be reported elsewhere. In
most samples, the relaxation process led to a pattern that
was essentially a symmetrical one, despite the persistence
of a few undulations and lamella terminations that were
probably due to imperfections of the experimental setup,
such as thermal bias, long-range concentration gradients
in the liquid, convection flows, and grain boundaries
(Fig. 2). In a few samples, however, the final stationary
pattern was clearly of the zigzag type [Fig. 4(a)]. This
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FIG. 3. View of a pattern after 10 min at V � 0:5 �ms�1, and
35 min at V � 1 �ms�1 in a 300-�m-thick sample. Lamellar
domains are separated by disordered regions containing topo-
logical defects, and rods. Horizontal width 440 �m.
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was due to the fact that the average spacing of the system
was larger than usual in these experiments (see below),
but the reason of this fact itself (the larger average spac-
ing) was unclear, except that it occurred only in samples
in which the experimental imperfections happened to be
particularly weak.

The transition from symmetrical to zigzag patterns
was studied as follows. An almost uniform zigzag pattern
was obtained in a large (about 1-mm wide) eutectic grain
after a 4 h pulling at V � 0:5 �ms�1. It was then sub-
mitted to a sequence of four V jumps separated by 30 min
FIG. 4. Top views of zigzag patterns (a) V � 0:5 �ms�1.
Solidification time: 4 h; (b) V � 0:39 �ms�1. Solidification
time: 30 min; (c) V � 0:3 �ms�1; solidification time: 30 min.
Sample thickness 300 �m. Horizontal width 440 �m.
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pullings at constant V. We first decreased V to 0.39 and
0:3 �ms�1 and then reincreased it to 0.39 and
0:5 �ms�1. The first three steps of the sequence are
illustrated in Fig. 4. We extracted the local values of �,
the amplitude A, and the wavelength L of the zigzag
modulation by fitting the skeletonized image of the la-
mellae with a sine function over some space periods in
different regions of the micrographs. We assumed that the
control parameter of the instability is �=�m, as it is for the
1D instabilities. The measured values of A and L are
plotted as a function of �=�m in Fig. 5. Despite the
dispersion of the data, it is clear that there exists a
threshold �c, located between 0:85�m and 0:95�m, below
which no zigzag pattern was observed, and above which A
increased as �=�m increased. This is a clear sign of a
bifurcation, although the character (supercritical or
slightly subcritical) of this bifurcation could not be de-
termined. The existence of a region without zigzags at the
lowest values of V in Fig. 4 does not necessarily mean
that the bifurcation was subcritical. The zigzag pattern
actually exhibited a slow global (upward) drift along the
y axis, at a velocity vd of about 0:05 �ms�1 for V �
0:5 �ms�1. Most probably, this was not an intrinsic
property of the pattern, but the consequence of a thermal
bias, which was comparable to tan�1�vd=V� � 5:7� in
this experiment. This external forcing can explain the
persistent absence of zigzags up to a certain distance
(which increases as �� �c decreases) from the colder
wall, as observed in Figs. 4(b) and 4(c). Finally, Fig. 5(b)
shows that L steeply increased when V was diminished
and redecreased with some hysteresis as V was switched
back to its initial value. This is a characteristic behavior
of the zigzag instability, as studied, for instance, in
Rayleigh-Bénard convection, which originates from its
‘‘diffusive’’ character, i.e., from the fact that its amplifi-
cation coefficient ! and wave vector k are related by ! �
�D���k2 at small k, where � � ��� �c�=�m is the dis-
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FIG. 5. (a) Amplitude A and (b) wavelength L of the zigzags
vs the reduced spacing �=�m. Filled (open) symbols: data
obtained by decreasing (increasing) V. The error bars represent
the experimental dispersion.
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tance from the instability threshold, and D��� (phase
diffusion coefficient) changes sign at � � 0 [12]. In con-
clusion, our observations prove the existence of a zigzag
bifurcation, the threshold of which corresponds to the
upper stability bound of the symmetric lamellar patterns,
in bulk near-eutectic CBr4-C2Cl6.

We have also studied the lower (upper) stability bounds
of the symmetrical (zigzag) patterns. The symmetrical
patterns were unstable against lamella elimination below
about 0:7�m —as they are in thin samples [10]—while
the zigzag patterns were unstable against a lamella
breakup instability above about 1:1�m. The lamella
breakups generally evolved into the creation of new la-
mellae, which reduced the spacing.We never observed any
lamellar pattern with a value of �=�m lying outside the
range 0.7–1.1, even in small domains. It is thus clear that
the morphology diagram of nonfaceted eutectics in bulk
samples is profoundly different from what it is in thin
samples. In thin samples, the zigzag and the lamellar
breakup are usually blocked allowing a series of
symmetry-breaking (tilt and oscillations) bifurcations
to occur at spacings larger than 1:1�m [8,9]. In bulk
samples, the occurrence of the lamella breakup at rela-
tively small spacings eliminates these bifurcations and
leads to the formation of topological defects. We have
observed that, sufficiently far above the threshold, the
zigzag patterns always exhibited line defects correspond-
ing to a phase jump of the pattern. Such a defect extend-
ing over about 10� can be seen at the bottom of Fig. 4(a).
In this particular case, the defect disappeared when we
decreased V, indicating that it was not linked to a sub-
boundary in the crystals but was an intrinsic nonlinear
property of the zigzag pattern. This may be a clue to the
origin of the ‘‘line faults’’ or ‘‘mismatch surfaces’’ that
always appear in large density in the cross- sections of
bulk metallic lamellar eutectics [19]. Our observations
suggest that such ‘‘faulty’’ patterns might be steady at
spacings much larger than the zigzag instability thresh-
old. This would be compatible with the fact that the �
distributions measured in bulk metallic eutectics gener-
ally have a larger width (>20%) [20] than that of the
stability range of the symmetrical lamellar pattern
(’10%).

In conclusion, the experimental setup that we have
presented here is a powerful tool for the study of eutectic
growth patterns in bulk samples. It has allowed us to
show that a zigzag bifurcation is the primary instability
of a bulk lamellar eutectic (CBr4-C2Cl6) near the eutectic
concentration and that this bifurcation occurs at an un-
expectedly low (0:85�m) spacing value. A similar result
was recently found numerically using a phase-field
175701-4
method and a one-sided model (no diffusion in the solid)
by Parisi and Plapp [13]. The investigation of other as-
pects of 2D eutectic growth, such as the dynamincs of
line defects, the lamella-rod transition, and the effects of
the convection flows, is in progress.
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