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We describe and test a novel molecular dynamics method which combines quantum-mechanical
embedding and classical force model optimization into a unified scheme free of the boundary region,
and the transferability problems which these techniques, taken separately, involve. The scheme is based
on the idea of augmenting a unique, simple parametrized force model by incorporating in it, at run time,
the quantum-mechanical information necessary to ensure accurate trajectories. The scheme is tested on
a number of silicon systems composed of up to �200 000 atoms.
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Many processes in materials involve strongly coupled
subregions of the system which are best modeled in a
‘‘multiscale’’ fashion, i.e., by the concurrent use of differ-
ent levels of description. As an example, the mechanical
failure of brittle solids involves complex bond breaking
processes at the advancing crack tip as well as chemically
simpler stress concentration phenomena in a much larger
region surrounding the tip [1,2]. Using a unique model,
e.g., a quantum-mechanical Hamiltonian or a classical
force field, in this or a similar situation is not a viable
strategy. On the one hand, performing expensive quantum
calculations on the whole system can rarely be afforded,
as the system sizes and simulation times treatable in this
way are severely limited. Even when possible, such cal-
culations imply a significant waste of resources, since a
simple classical interatomic potential would be sufficient
to model most of the system. On the other hand, no clas-
sical potential can be used as the only tool to model the
entire system unless it can be made accurate enough to
describe the whole range of expected chemical reactions.
Much effort has recently been devoted in this direction to
develop ‘‘reactive’’ classical force fields capable of high
accuracy for some specific materials and classes of re-
actions [3–6]. However, it is clear that considerable effort
and subtlety are involved in adapting an existing potential
[7] or developing a new one each time a new chemical
situation is targeted. Indeed, the lack of straightforward
transferability is the main disadvantage of the specialized
classical potentials techniques, in striking contrast with
the application of first principles techniques, which are
computationally intensive but accurate and general. To
date, developing a general analytic interatomic potential
which is a priori capable of chemical accuracy in all situ-
ations still seems an overwhelmingly difficult task [7].

As a result, the use of multiscale modeling appears to
be necessary to approach the crack (propagation) problem
mentioned above and many others. Consequently, multi-
Hamiltonian schemes have been proposed, which divide
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the system into a ‘‘quantum’’ region where the more im-
portant chemical processes occur and a larger ‘‘embed-
ding’’ region described by a less computationally inten-
sive model. Matching these different regions mechani-
cally [2,8–10] and chemically [11,12] is, however, a
delicate issue. Perhaps the main practical drawback of
these embedding approaches is that dedicated techniques
have to be developed and judicious choices made [13] to
represent the boundaries between regions.

In the present work, we retain the idea that a unique,
classical force model should be used to describe the entire
system to avoid boundary problems. Also, we aim at
constructing a scheme which can be relied upon to be
fully transferable, or in all cases no less transferable than
some reference quantum model taken, such as an ab initio
density functional theory (DFT) scheme. Moreover, we
wish to be able to enforce the high accuracy of our ref-
erence quantum model where and when we choose to,
across the system and during its time evolution. However,
we take the view that no feasible analytic form for the
classical force model can reproduce simultaneously the
reference model’s accuracy (say, over a small domain of
system configurations) and transferability (to all other
such domains), since these two properties pose opposite
requirements on the force model’s complexity (measured,
for example, by the number of fitting parameters). We
note that underlying this difficulty is a general problem of
fitting techniques involving parameter optimization,
where functional complexity has to be tuned as a com-
promise between bias and variance of the fit [14]. We thus
renounce any attempt to develop sophisticated parame-
trized functional forms with sets of fixed-valued opti-
mized parameters. Rather, we select a simple parame-
trized potential and ‘‘augment’’ it at run time with the
necessary extra information, which is computed ‘‘on the
fly’’ by means of accessory quantum calculations. These
more expensive quantum calculations are the price we pay
to ensure both the transferability and accuracy of
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FIG. 1 (color). Schematic of the QM zone centered on the
defect in position 3, and of two of the clusters used by the QM
‘‘black box’’ to compute the forces used in the fit (see text).
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electronic-structure calculation in a simple and flexible
scheme, which is well suited to investigate a range of
multiscale processes. These ideas were outlined in [15].

We start by assuming the existence of a parametrized
classical potential which captures the general physics of
the system studied reasonably well [7,16]. We allow the
parameters of the potential to take different values across
the system, e.g., with independent parameters �ij for each
two-body term V2 (�ij; Ri; Rj) corresponding to the pair
of atoms i and j. The original potential is assumed to
accurately describe only processes that are simple from a
chemical point of view, but may be taking place through-
out the entire system at all times, such as the elastic
deformations of the atomic lattice far from an opening
crack. We then set out to extend the applicability of the
potential to the remaining, more complex processes such
as the breaking and forming of chemical bonds which
occur during the evolution of the system. The information
‘‘missing’’ from the classical potential is computed using
‘‘black box’’ engines [based, e.g., on a DFT or a tight
binding (TB) formalism] and then incorporated ‘‘on the
fly’’ into the potential by allowing an appropriate subset
of its parameters to vary suitably with time.

A possible flow structure for the ‘‘learn on the fly’’
(LOTF) hybrid scheme using a force fitting [17,18]
predictor-corrector approach is as follows: (1) Initial-
ization: start with the physical system in its initial con-
ditions, and with a reasonable choice of initial parameters
for the classical potential. (2) Extrapolation: as in stan-
dard molecular dynamics (MD), use the potential with
fixed parameters to generate a small number of time steps
of the system trajectory. (3) Testing: in the latest configu-
ration, the local validity of the classical potential is
assessed on a site by site basis, and a selected subset of
atoms is flagged for quantum treatment. (4) Quantum
calculations: use any method which provides the desired
accuracy to compute the forces on only the selected subset
of atoms. (5) Force fitting: tune the parameters of the
classical potential until they reproduce the accurate
forces. (6) Interpolation: return the state of the system
to that before the extrapolation and rerun the dynamics,
interpolating the potential parameters between the old
and the new values. (7) Return to 2.

As an example, we consider the diffusion of a vacancy
in silicon. The empirical potential used is the Stillinger-
Weber (SW) potential [16]:

E �
XN
i

� X
j2hi;ji


1�Bij=r
p
ij � Aij�fcut�rij�

	
X

j;k2hi;j;ki


2� cos��ijk� � Cijk�
2fcut�rij; rik�

�
; (1)

where the first sum is over the atoms; the second and third
sums are over pairs and triplets of atoms which include
atom i. The cutoff functions fcut go to zero exponentially
when the interatomic distance reaches a chosen cutoff
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value (3.77 Å). The parameters Aij, Bij, and Cijk are
allowed to vary with time. After initialization, in
step (2) we extrapolate the dynamics at finite temperature
for five MD steps, using the velocity Verlet algorithm with
1 fs time step. In step (3) we choose to compute accurate
(TB) quantum-mechanical forces for the atoms located
within 7.5 Å of the diffusing defect. A simple way to
calculate these forces is to first construct for each atom a
cluster including all its neighbors up to some given cluster
radius, here set to 7 Å. To chemically terminate the
cluster, the Si atoms bound to cluster atoms and located
outside the cluster radius are replaced by hydrogen atoms.
These are positioned along the direction of each substi-
tuted Si-Si bond at the Si-H equilibrium distance from the
cluster atoms. The Hellman-Feynman force on the re-
quired atom is then computed after direct diagonalization
of the cluster system. The forces on the central atom of
each cluster (cf. Figure 1), are shown to converge quickly
with cluster radius and to be relatively insensitive to the
precise termination strategy [19]. We note that since only
these forces are kept from the TB calculations, this im-
plies that the system trajectory will not be affected by fine
details in representing the boundary. In step (4) the
parameters of the classical potential are optimized by
minimizing the squared difference between forces given
by the classical model and the accurate forces. For atoms
that do not have a quantum-mechanical force calculated
on them, the current classical force is used as the target of
the optimization. Tests show that local parameters related
to atoms which are further than a few neighbor shells
outside the QM region do not change appreciably with the
fit. The optimization [step (5)] is therefore limited to the
two-body and three-body terms of the potential (1) in-
volving atoms in a spherical region of 12 Å radius cen-
tered on the diffusing defect. About 30 conjugate gradient
steps in parameter space are sufficient to perform a con-
verged fit, the maximum residual deviation from the
target forces being typically less than 0:01 eV= �A. The
LOTF value for the Si vacancy diffusivity [20] obtained
from a 1 ns constant temperature (CT) simulation using
the above scheme at T � 1400 K with a 215 atom peri-
odic system is �2:1
 0:4� � 10�6 cm2=s [19]. This com-
pares well with the value calculated using the TB scheme
of �2:3
 0:2� � 10�6 cm2=s, obtained using the model in
[21] [the Stillinger-Weber potential gives �3:4
 1:0� �
10�5 cm2=s]. We report in Fig. 2 results for the vacancy
diffusivity in Si as a function of temperature, obtained by
175503-2
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FIG. 2 (color). Arrhenius plot of the silicon vacancy diffu-
sivity obtained by the present scheme fitted ‘‘on the fly’’ on dif-
ferent TB models (red), compared with the results of fully TB
simulations (black) and fixed-parameter SW potential (blue).

0

1

2

3

4

5
−0.5

0

0.5

Time [ps]

A
ng

le
 P

ar
am

et
er

s,
 C

Surface Angles 

Bulk Angles 

θ = 90∼

FIG. 3 (color). Time evolution of angle parameters near a
Si[100] reconstructed surface. A representative ‘‘surface
angle’’ is marked in the inset with a black arc. The ‘‘bulk angle
parameters’’ are all for angles centered on atoms of the third
atomic layer.

FIG. 4 (color). Equilibrium structure of the Si 30� partial
dislocation left kink from a 900 K hybrid simulation (only the
glide plane atoms are shown). One undercoordinated atom (red)
and its neighbors (blue) are flagged for QM treatment. The gray
atoms further away complete the set of atoms for which
potential optimization is performed. The parameters corre-
sponding to interactions between the yellow atoms in the
external region are not updated. Empty circles represent the
stable 0 K structure [26].

VOLUME 93, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S week ending
22 OCTOBER 2004
CT simulations using the fixed-parameter SW potential,
two different TB schemes [22,23], and our hybrid scheme.
To be able to perform several fully quantum-mechanical
simulations we used a 64 Si atom cubic cell. As the cell is
so small, here we compute the exact TB forces to be used
in the LOTF fit by direct diagonalization of the periodic
system Hamiltonian. We note that the large difference
between the results obtained by fitting the scheme on the
two different quantum models is due to the different
predictions of these models in accurate quantitative com-
putations, reproduced by the present method. This em-
phasizes the fact that the present scheme can at best be
expected to reproduce the results of the QM model that it
is given [24], but can in no way improve its accuracy.

To further elucidate how the scheme adapts to the local
environment, we report in Fig. 3 the time evolution of the
parameters Cijk at a dimerized Si[100] surface at room
temperature. In the bulk these angle parameters remain at
all times close to their �1=3 equilibrium value (left).
However, on the reconstructed surface, the equilibrium
angle on the lower side of the buckled dimers (inset) is
lowered to almost 90�. The corresponding parameters
‘‘learn’’ this by switching to a value close to zero, and
flip back and forth between zero and �1=3 as the buck-
ling direction varies with time (right).

Moving to a problem where a fully quantum approach
would be practically unfeasible, we simulate the gliding
motion at 900 K of an opposing pair of 30� partial
dislocations in Si, using a 4536 atom unit cell. We flag
for QM treatment all atoms within 7.0 Å of the dangling
bonds (undercoordinated atoms) formed during disloca-
tion motion, corresponding to two disjoint QM regions of
100–120 atoms, which follow the diffusing kink of each
partial dislocation. On a single 1200 MHz Pentium III
processor, the hybrid simulation takes �3–4 CPU minutes
per MD step using a cluster radius of 7 Å. For comparison,
a MD step takes 11 h using a state-of-the-art linear
scaling tight binding code [25], while a conventional
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direct diagonalization would be approximately an order
of magnitude slower. Improving on the accuracy of the
classical potentials is crucial to simulate this extended
defect. LOTF simulations on this system reveal a bond
topology for the free energy minimum at 900 K which
differs from that obtained in the same conditions (and at
0 K [26]) from the SW model, with a square of atoms
formed adjacent to an antiphase defect (red atom in
Fig. 4), and a different defect migration pathway. While
the TB model used [23] may still not capture every
relevant feature of the phenomenon under study, these
results indicate the need to enforce electronic-structure
precision. Indeed, in dislocation dynamics the inaccurate
canonical phase space sampling provided by classical
potentials is regarded as the main source of discrepancy
between theory and experiment [26].
175503-3
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FIG. 5 (color). Propagation of the �111�1�10� crack in silicon,
using the LOTF scheme and the SIESTA code as quantum
engine. Brittle fracture propagation on a (111) cleavage plane
is correctly predicted. Note the 2� 1 Pandey reconstruction
just appearing on the upper opening surface.
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We next test the scheme on a much larger system
containing approximately 200 000 atoms, to simulate
brittle failure in silicon under uniaxial tensile stress.
About 300 atoms near the crack tip are treated quantum
mechanically using the SIESTA DFT package [27] as the
QM black box. A 2 ps simulation (2000 MD time steps)
took 26 h on a 32-processor IBM SP-SMP computer, a
single cluster calculation taking about 1 CPU minute.
While the full scientific results, obtained using both TB
[28] and DFT [27] black boxes, will be presented else-
where, we note that the fixed-parameter SW model incor-
rectly predicts tip blunting and amorphization [2,29].
The incorporation of quantum-mechanical information
using the LOTF scheme, however, recovers the correct
brittle behavior, consistent with the QM/MM (quan-
tum mechanics/molecular mechanics) results of [29].
The 2� 1 reconstruction of the crack surface (not pre-
dicted by the TB model) is also reproduced using the first
principles black box (Fig. 5). Longer simulations allow
the investigation of even subtler effects such as the an-
isotropy of propagation direction in the Si(110)[010] crack
system [30].

In summary, we proposed and tested a hybrid molecu-
lar dynamics scheme in which the accuracy can be sys-
tematically monitored and improved and which does not
suffer from boundary problems. The embedded quantum
region can be treated by a number of methods in a ‘‘black
box’’ fashion, which can be easily used concurrently and
matched through the unique, general interface provided
by the fitting procedure. So far we have implemented
interfaces for the DFTB [31], SIESTA [27], and FIREBALL

[32] packages, besides several empirical TB schemes.
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