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Mechanical Heterogeneities in Model Polymer Glasses at Small Length Scales
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Molecular simulations of a model, deeply quenched polymeric glass show that the elastic moduli
become strongly inhomogeneous at length scales comprising several tens of monomers; these calcu-
lations reveal a broad distribution of local moduli, with regions of negative moduli coexisting within a
matrix of positive moduli. It is shown that local moduli have the same physical meaning as that
traditionally ascribed to moduli obtained from direct measurements of local constitutive behaviors of
macroscopic samples.

DOI: 10.1103/PhysRevLett.93.175501 PACS numbers: 62.20.Dc, 31.15.Qg, 62.25.+g
The elastic moduli of amorphous polymeric glasses
have traditionally been characterized at length scales at
which the material is treated as a mechanically homoge-
neous continuum [1]. Atomic-level studies of metallic
glasses or polycrystalline materials have shown that
such systems become spatially and mechanically hetero-
geneous at atomistic length scales [2–7]. In the particular
case of glassy polymers, however, the length scale at
which mechanical heterogeneities occur is not known.
Interestingly, uses of polymeric materials in increasingly
demanding nanofabrication applications require that an
understanding of their mechanical behavior be developed
at nanometer length scales [8].

In this Letter, we use molecular simulations to deter-
mine the local mechanical properties of glassy configu-
rations of a polymer. The simulation cell is subdivided
into small cubes of length l. By performing a microscopic
momentum flux balance on a cube m, one arrives at the
following expression for the local stress tensor, �m

ij [9,10]:
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where �m is the number density of cube m. Subscripts are
used to denote Cartesian components. In the second term,
U is a pairwise additive potential energy function and rab

is the distance between two interaction sites a and b. If
the vector joining a and b, denoted by rabi , passes through
cube m, the length of the line segment located inside cube
m is defined by qab; otherwise, qab � 0. The term qab=rab

determines how different pairwise interactions are appor-
tioned to the local stress of cube m, and includes contri-
butions from pairs of segments located outside the cube.
Integration of �m

ij over the entire volume of the system
yields the usual stress tensor of the bulk [11], denoted by
�ij in what follows. Note that the local stress tensor
shown in Eq. (1) is different from the so-called atomic-
level stress tensor employed in previous studies of local
moduli [2– 4]. The latter is restricted to the stresses ex-
perienced by individual atoms, whereas the former is a
0031-9007=04=93(17)=175501(4)$22.50 
spatial property of the system involving collective fluc-
tuations of stresses acting on small domains.

For a system at equilibrium, the relation between the
stress fluctuations and the local elastic modulus tensor,
Cm
ijkl, is obtained from a second derivative of the free

energy with respect to strain [7,9]:

Cm
ijkl � CBm

ijkl � CSm
ijkl � CKm

ijkl; (2)
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ik
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and where V is the volume of the bulk system. The
brackets denote a canonical ensemble average. The so-
called Born term [12], CB

ijkl, determines the instantaneous
elastic modulus for any given configuration under a uni-
form, infinitesimally small strain. The use of the Born
term alone is justified for affine or uniform deformation
of all particles. Note, however, that the assumption of
uniform displacement might not be justified at molecular
length scales; the nonaffine or ‘‘internal’’ motion of par-
ticles gives rise to a decrease in the free energy after a
homogeneous deformation [4,12–15]. This nonaffine
component of the deformation has been shown to be
particularly important in amorphous, two-dimensional
systems [13]. In this Letter, the internal particle motion
is driven by the thermal fluctuations, and is implicitly
taken into account in our modulus calculation through the
stress-fluctuation term, CSm

ijkl [15,16]. The contribution of
the kinetic energy to the elastic modulus at each local
domain is denoted by CKm

ijkl. For amorphous polymers, we
have found that the Born and the stress-fluctuation terms
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are of comparable magnitude, and much larger than the
kinetic term for all nontrivial components [17].

The polymer model considered in this work consists of
32 spherical interaction sites connected by harmonic
springs. The nonbonded sites interact via a Lennard-
Jones (LJ) potential energy function. In what follows,
all quantities are reported in LJ reduced units [11]. The
details of our model and of our sample preparation are
outlined in Ref. [18]; long NPT molecular dynamics
(MD) simulations were performed in which the tempera-
ture was gradually reduced from well above the glass
transition temperature (Tg � 0:43). The number of chains
and the pressure were fixed at 67 and 0.3, respectively. A
glass configuration at T � 0:10 (� � 1:05) was used as a
starting point for NVT MD simulations over 107 time
steps (
t � 0:001). Ensemble-averaged local stresses,
local densities, and local elastic moduli were calculated
from Eqs. (1)–(5). A cubic simulation box of length L��
12:68	 was subdivided into a grid of size 25
 25
 25.
The local elastic moduli at different length scales were
calculated in cubic domains of length l (2 � l � L),
centered at these grid points. All the results shown in
this Letter were verified to be the same for configurations
prepared from different initial states generated by Monte
Carlo techniques [18] and long MD simulations.

Figure 1 shows local shear moduli profiles calculated
for domains of different sizes. Because of limitations of
space, results are only shown for the shear modulus,
C1212, which is simply denoted by G in what follows.
By construction, at l � L, we obtain the volume-averaged
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FIG. 1 (color online). Probability distribution function of
local shear moduli, p�Gm	, for different domain sizes, l. The
dotted lines correspond to Gaussian distributions characterized
by the mean and standard deviation (SD) of data generated at
each l. All the means are the same, 16.2, while the SDs depend
on l; SD � 3:4, 7.3, and 13.0 for l � 5, 3, and 2, respectively.
Note that all the nontrivial components of the elastic modulus
tensor exhibit a behavior analogous to that of Gm. For instance,
the local normal moduli (e.g. Cm

1111) are also characterized by
Gaussians with mean 98:1� 1:2 and SD � 37:4� 4:1 at l � 2.
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elastic modulus corresponding to the modulus of the
entire system. As l becomes smaller, the local shear
moduli adopt a Gaussian distribution whose width in-
creases progressively as the domain size is decreased.
For the smallest domain size considered in this Letter,
i.e., l � 2, approximately 8–10 monomers are contained
in each domain. At l � 2, the stiff domains of the poly-
mer can exhibit a modulus that is approximately three
times as large as the average modulus of the system,
whereas the soft regions can exhibit vanishingly small
moduli. It is remarkable that these distributions remain
Gaussian down to regions comprising only a few mono-
mers. These findings should be contrasted with those of
previous studies of elastic properties of amorphous me-
tallic glasses. Such studies did not take into account
contributions from stress fluctuations, and the reported
distributions of Gm were non-Gaussian and always posi-
tive [3].

A noteworthy feature of the results shown in Fig. 1 is
that some of the local shear moduli become negative. In
general, a negative elastic modulus is indicative of a
mechanically unstable material; a material that deforms
spontaneously in the direction of an applied stress [4,19].
However, as shown in Fig. 2, the mechanical heterogene-
ities are not found to change over the course of long MD
simulations; domains of strongly negative moduli remain
negative. This finding suggests that the negative elastic
moduli arise naturally in deeply quenched bulk amor-
phous polymeric glasses at molecular length scales. At
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FIG. 2 (color online). Block-averaged local shear moduli for
a long MD run. Local shear moduli were extracted from
calculations for l � 2 (see Fig. 1), for domains of ( 4 ) strongly
negative modulus, Gm <�5; (�) bulklike modulus, 15<
Gm < 20; ( � ) strongly positive modulus, Gm > 40. Each block
average corresponds to 107 MD time steps and each data point
represents an average of the local shear moduli over the
specified domains. Slight variations of strongly negative and
positive moduli are a reflection of the thermal fluctuations of
the local stresses.
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higher temperatures (near or above Tg), the thermal mo-
tion of polymer segments becomes more significant, and
as a result of ergodic restoring processes, the block-
averaged local moduli approach the bulk mean value at
that temperature over the length of the simulation.

In the following discussion, we concentrate our atten-
tion on the smallest length scales, namely l � 2. It is of
interest to determine whether stiff or soft regions adopt
specific spatial arrangements. Figure 3(a) shows that stiff
regions coexist with much softer regions. To quantify this
spatial inhomogeneity, the volume-averaged local shear
modulus was calculated as a function of radial distance r
around regions with either highly positive or negative
elastic modulus [Fig. 3(b)]. For both types of region, the
volume-averaged shear moduli approach the average at
r � 2. In contrast, for regions that exhibit a shear modu-
lus close to the average value, the volume-averaged local
modulus does not exhibit significant variations with dis-
tance. These results show that domains of negative moduli
are stabilized by surrounding regions of positive moduli,
giving rise to a material that is stable over longer length
scales. Recent experimental studies on macroscopic com-
posite materials have shown that domains of negative
stiffness can in fact be stabilized in a stiff matrix [19].
Such domains have also been observed at tilted grain
boundaries in computer simulations of gold-copper bi-
crystals [4]. Our results, however, correspond to pure,
completely amorphous polymeric materials and the re-
ported heterogeneities arise at molecular-level length
scales.

At macroscopic length scales, a shear modulus can be
inferred from the linear relation,  � G!. In order to
determine whether the above relation holds at the smaller
length scales considered in this Letter, a simple shear
FIG. 3 (color). (a) Spatial heterogeneity of the local shear
modulus at l � 2. The arrow in the scale bar indicates the bulk
averaged shear modulus (G � 16:2). (b) Volume-averaged local
shear modulus as a function of radial distance r. Different
symbols indicate the nature of the region around which the
average modulus was calculated; strongly negative (Gm <�5,
triangles), bulklike (15<Gm < 20, squares) or strongly posi-
tive (Gm > 40, circles).

175501-3
deformation was applied to the system and the resulting
change in the local stresses,  m�� h�m

12;!�0i � h�m
12;!>0i	,

was calculated. All the segmental positions were scaled
initially by L and transformed into a deformed space with
the so-called h matrix [20]. In MD simulations of 2
 106

time steps, ! was increased in a stepwise manner by 5

10�4 in intervals of 104 time steps. The corresponding
strain rate ( � 5
 10�5 in LJ units) was small enough
[5,21] for the initial slope of the stress-strain curve to be
in agreement with the modulus obtained from stress
fluctuations [Fig. 4(a)]. In order to predict the change in
local stresses, it was assumed that all domains are
strained uniformly;  mp � Gm!. Figure 4(b) shows that
cubes of strongly negative moduli (triangles) actually
exhibit a decrease in stress as the shear strain is increased.
In contrast, cubes having strongly positive moduli show a
continuous increase of stress (circles), which is twice as
large as that experienced by domains with bulklike mod-
uli (squares).

An earlier study of a binary LJ glass former reported an
inhomogeneous mechanical response at the atomic level
[5]; after a plastic deformation, some of the changes of
the atomic strain became negative (i.e. contrary to the
direction of applied stress) or highly positive. It was
speculated that atoms having abnormal shear moduli
could be precursors of large corrective motion of atoms
in plastic flow [2,5]. That negative strains occur at the
FIG. 4 (color). (Top row) Stress-strain relationship of (a) the
entire system and (b) domains of strongly negative ( 4 ), bulk-
like (�), and strongly positive ( � ) moduli. The elastic re-
sponse predicted from the shear modulus is shown by the
dotted line. (Bottom row) Change in local shear stress  m

versus predicted change in local stress  mp for all the domains
at (c) ! � 0:005 and (d) ! � 0:02. The colors show the inten-
sity of data at a given ( mp;  m). The dotted lines were obtained
by a least-square fitting method.

175501-3



VOLUME 93, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S week ending
22 OCTOBER 2004
atomic level is not particularly surprising. What is per-
haps more intriguing is that for polymer glasses the
negative moduli persist over relatively large regions of
space comprising many particles.

In Fig. 4(b), strongly negative and positive moduli fail
to predict  m for ! > 0:0075. We hypothesize that, for
larger deformations, a discontinuity of  m occurs near the
boundary regions of strongly negative and positive mod-
uli and is relaxed by some local rearrangement of seg-
ments. In contrast, a large fraction of the local bulklike
moduli still predict  m perfectly, anticipating the overall
elastic response in Fig. 4(a). Note, however, that from
! � 0:005 to 0.02 (indicated by arrows in Fig. 4(a)],
many of the bulklike domains with slightly larger (or
smaller) moduli than that of the entire system also start to
overpredict (or underpredict)  m; the long axis of the
ellipse in Fig. 4(c) tilts clockwise in Fig. 4(d). Before ! �
0:03, the distribution of  m remains relatively narrow.
At ! � 0:03, the spread of  m increases considerably
and the deformation is accompanied by some large
collective motions of segments; this is akin to the so-
called local shear transformation observed in metallic
glasses [5].

The concepts of local density and local stress are often
invoked in discussions of material heterogeneities at in-
terfaces, e.g., grain boundaries [4,6], free surfaces [22]. In
the case of amorphous systems, it is intuitively appealing
to expect a higher stiffness from a denser, more closely
packed material. However, we have not found any signifi-
cant correlations between the local shear modulus and the
local density. Similarly, no strong correlation is observed
between the local shear modulus and the local shear
stress. In addition, we have not found significant correla-
tions between the sign of the moduli and the motion of the
particles in the corresponding domains during the simu-
lation. This observation may be related to the conclusions
drawn from the plastic deformation of atomistic polymer
models [23,24].

Our finding of microscopic heterogeneities in the me-
chanical properties of glasses is of interest in light of
recent experimental observations [25,26] related to the
existence of dynamic heterogeneities in glasses, which are
believed to arise at comparable length scales. The origin
of dynamic heterogeneities is not well understood, but we
expect them to be driven by heterogeneities of the stress.
It would therefore be of interest to determine whether
local mechanical properties are correlated or not with the
rates of local molecular relaxation. As indicated above,
the thermal motion of polymer molecules contributes
significantly to the stiffness of a glass; we anticipate
that the mechanical heterogeneities observed here will
be decreased by free surfaces, where molecular mobility
is greater than in the bulk [27,28], and that the spatial
connectivity between domains of like moduli will be
enlarged. This may become a crucial issue in the fabrica-
175501-4
tion of nanoscopic polymeric glassy structures which is
being pursued by the semiconductor industry [8,29].
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