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Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked
oscillators coexist with drifting ones. Discovered two years ago, such ‘‘chimera states’’ are believed to
be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of
nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators
coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated
drift state, and dies in a saddle-node bifurcation with an unstable chimera state.
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In Greek mythology, the chimera was a fire-breathing
monster having a lion’s head, a goat’s body, and a serpent’s
tail. Today the word refers to anything composed of
incongruous parts, or anything that seems fantastical.

This Letter is about a mathematical chimera in which
an array of identical oscillators splits into two domains:
one coherent and phase locked, the other incoherent and
desynchronized [1–3]. Nothing like this has ever been
seen for identical oscillators. It cannot be ascribed to a
supercritical instability of the spatially uniform oscilla-
tion, because it occurs even if the uniform state is stable.
Furthermore, it has nothing to do with the partially
locked/partially incoherent states seen in populations of
nonidentical oscillators with distributed frequencies
[4,5]. There, the splitting of the population stems from
the inhomogeneity of the oscillators themselves; the de-
synchronized oscillators are the intrinsically fastest or
slowest ones. Here, all the oscillators are the same.

In this Letter, we explain where the chimera state
comes from and pinpoint the conditions that allow it to
exist. Previously unnamed, it was first noticed by
Kuramoto and his colleagues [1,2] while simulating the
complex Ginzburg-Landau equation with nonlocal cou-
pling. It also occurs in a wide class of reaction-diffusion
equations, under particular assumptions on the local ki-
netics and diffusion strength that render the effective
coupling nonlocal [3,6]. Although nonlocal coupling
[7–9] is less explored than local or global coupling
[4,5,10–13], it arises in diverse applications ranging
from Josephson junction arrays [14] and chemical oscil-
lators [1–3], to the neural networks underlying snail shell
patterns [15,16] and ocular dominance stripes [15,17].

We study the simplest system that supports a chimera
state: a ring of phase oscillators [1,2] governed by
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� !�
Z �

��
G�x� x0� sin���x; t� ���x0; t� � 	�dx0:

(1)

Here ��x; t� is the phase of the oscillator at position x at
time t. The space variable x runs from �� to � with
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periodic boundary conditions. The frequency ! plays no
role in the dynamics; one can set ! � 0 by redefining
� ! ��!t without otherwise changing the form of
Eq. (1). The angle 0 
 	 
 �

2 is a tunable parameter.
The kernel G�x� x0� provides nonlocal coupling between
the oscillators. It is assumed to be even, non-negative,
decreasing with the separation jx� x0j along the ring, and
normalized to have unit integral. Kuramoto and
Battogtokh [1,2] assumed an exponential kernel G�x� /
exp���jxj�, but instead we will take

G�x� �
1

2�
�1� A cosx� (2)

where 0 
 A 
 1. Simulations show that both kernels
give qualitatively similar results, but the cosine kernel
allows the model to be solved analytically.

Figure 1(a) shows a snapshot of a chimera state for
Eq. (1). The oscillators near x � 
� are locked and
coherent: they all move with the same instantaneous
frequency and are nearly in phase. Meanwhile, the scat-
tered oscillators in the middle of Fig. 1(a) are drifting,
both relative to each other and relative to the locked
oscillators. They slow down as they pass the locked
pack, which is why the dots appear more densely
clumped there.

These simulation results can be explained [1] by gen-
eralizing Kuramoto’s earlier self-consistency argument
for globally coupled oscillators [5,10]. Let � denote the
angular frequency of a rotating frame in which the dy-
namics simplify as much as possible, and let � � ���t
denote the phase of an oscillator relative to this frame.
Introduce a complex order parameter Rei
 that depends
on space and time:

R�x; t�ei
�x;t� �
Z �

��
G�x� x0�ei��x

0;t�dx0: (3)

Then Eq. (1) becomes
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@t

� !��� R sin���
� 	�: (4)

By restricting attention to stationary solutions, in which
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FIG. 1. (a) Phase pattern for a chimera state. Parameters: A�
0:995, ��0:18, N�256 oscillators. Equation (1) was inte-
grated using a Runge-Kutta method with fixed time step dt �
0:025 for 200 000 iterations, starting from ��x� �
6r exp��0:76x2�, where r is a uniform random variable on
�� 1

2 ;
1
2�. (b) Local phase coherence R�x�, computed from (3).

Locked oscillators satisfy R�x���. (c) Local average phase

�x�.
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R and 
 depend on space but not on time (a condition that
also determines �), Kuramoto and Battogtokh [1] de-
rived a self-consistency equation equivalent to

R�x� exp�i
�x�� � ei�
Z �

��
G�x� x0� exp�i
�x0��

�
��

�������������������������
�2 � R2�x0�

p
R�x0�

dx0 (5)

where � � �
2 � 	 and � � !��.

Equation (5) is to be solved for three unknowns—the
real-valued functions R�x� and 
�x� and the real number
�—in terms of the assumed choices of � and the kernel
G�x�. Kuramoto and Battogtokh [1,2] solved (5) numeri-
cally via an iterative scheme in function space, and con-
firmed that the resulting graphs for R�x� and 
�x� match
those obtained from simulations of Eq. (1). Figures 1(b)
and 1(c) show the graphs of R�x� and 
�x� for the pa-
rameters used in Fig. 1(a).

The resemblance of these curves to cosine waves sug-
gested to us that Eq. (5) might have a closed-form solu-
tion. It does. Since the right-hand side of (5) is a
convolution integral, the equation is solvable for any
kernel in the form of a finite Fourier series; that is what
motivated the choice of (2). For this case, R�x� and 
�x�
can be obtained explicitly. The resulting expressions,
however, still contain two unknown coefficients, one
real and the other complex, that need to be determined
self-consistently.
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The solution proceeds as follows. Let

h�x0� �
��

�������������������������
�2 � R2�x0�

p
R�x0�

(6)

and let angular brackets denote a spatial average:

hfi �
1

2�

Z �

��
f�x0�dx0:

Expanding G with a trigonometric identity, Eq. (5) gives

Rei
 � ei�hhei
i � Aei�hhei
 cosx0i cosx

� Aei�hhei
 sinx0i sinx

� c� a cosx (7)

where the unknown coefficients a and c are given by

c � ei�hhei
i (8)

a � Aei�hhei
 cosx0i: (9)

The coefficient of sinx vanishes in (7), if we assume
R�x0� � R��x0� and 
�x0� � 
��x0�, as suggested by
the simulations. The assumed evenness is self-consistent:
it implies formulas for R�x� and 
�x� that indeed possess
this symmetry. For instance, R�x� satisfies

R2 � �Rei
��Re�i
� � �c� a cosx��c� � a� cosx�

� jc2j � 2Re�ca�� cosx� jaj2cos2x; (10)

which also explains why the graph in Fig. 1(b) resembles
a cosine. Likewise, 
�x� satisfies

tan
�x� �
R sin


R cos

�

Im�c� � Im�a� cosx
Re�c� � Re�a� cosx

: (11)

Another simplification is that c can be taken to be
purely real and non-negative, because of the rotational
symmetry of the governing equations. In particular, the
self-consistency Eq. (5) is left unchanged by any rigid
rotation 
�x� ! 
�x� �
0. Thus we are free to specify
any value of 
�x� at whatever point x we like. We choose

��2� � 0. Then Rei
 � c� a cosx implies R��2� � c.
Since R is real and non-negative, so is c.

To close the equations for a and c, we rewrite the
averages in (8) and (9) in terms of those variables. Using

hei
 � �Rei
�
h
R
�

��
������������������������
�2 � R2�x�

p
c� a� cosx

and inserting (10) into (8) and (9), we find

c � ei�
�
�� ��2 � jc� a cosxj2�1=2

c� a� cosx

�
(12)

a � Aei�
�
�� ��2 � jc� a cosxj2�1=2

c� a� cosx
cosx

�
: (13)

This pair of complex equations is equivalent to four real
equations for the four real unknowns c, Re�a�, Im�a�, and
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�. The solutions, if they exist, are to be expressed as
functions of the parameters � and A.

Figure 2 plots the region in parameter space where
chimera states exist, computed by solving Eqs. (12) and
(13) with a root finder and numerical continuation. To
obtain starting guesses for the four unknowns, we inte-
grated (1) numerically, then fit the resulting R�x� and 
�x�
to the exact solutions (10) and (11) to extract the corre-
sponding c, Re�a� and Im�a�, and estimated � directly
from the collective frequency of the locked oscillators. By
sweeping � at fixed A, we found that the chimera state
disappeared suddenly when it reached the boundary of
the region.

For deeper insight into the chimera state and its bifur-
cations, we now solve Eqs. (12) and (13) perturbatively.
Figure 2 suggests that we should allow � and A to tend to
zero simultaneously: let A � �, � � �1�, and seek solu-
tions of (12) and (13) as � ! 0. Numerical continuation
reveals that the solutions behave as follows:

�� 1��1�� �2�
2; c� 1� c1�� c2�

2;

Re�a� � u�2; Im�a� � v�2
(14)

where terms of O��3� have been neglected. Substituting
this ansatz into (12) and (13), we find that �1 � c1 is
required to match terms of O�

���
�

p
�. Then at leading order,

the real and imaginary parts of Eqs. (12) and (13) become

c1 � �Re�
���
2

p
h

�����������������������
�� u cosx

p
i� (15)

�1 � Im�
���
2

p
h

�����������������������
�� u cosx

p
i� (16)

u � �Re�
���
2

p
hcosx

�����������������������
�� u cosx

p
i� (17)

v � �Im�
���
2

p
hcosx

�����������������������
�� u cosx

p
i� (18)

where we have defined � � �2 � c2.
0

1
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FIG. 2. Parameter region where a chimera state exists. Solid
line, boundary determined by numerical solution of Eqs. (12)
and (13); dashed line, approximate boundary obtained from
perturbation theory (see text). A saddle-node bifurcation of a
stable and unstable chimera state occurs at the boundary.
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The solutions of these equations can be parametrized
by �, as follows. Writing f�u; �� for the right-hand side of
Eq. (17), we compute all the real roots of u � f�u; ��, and
regard them as functions of �. Then we sweep through all
the �’s for which Eq. (17) has a solution, and substitute
the associated u��� into the remaining equations to gen-
erate values of c1���, �1���, and v���.

This approach gives a great deal of information about
the chimera state. For instance, Fig. 3 plots the fraction of
oscillators that are drifting, fdrift �

1
� cos

�1��=u����, as a
function of the control parameter �1���. There are two
branches of solutions. The upper branch (which dynami-
cal simulations of Eq. (1) show to be stable) bifurcates
from a state of pure drift at �1 � 0. As �1 increases,
drifting oscillators are progressively converted into
locked ones, eventually reaching a minimum of about
44% drift at the largest �1 for which stable chimera
states exist, ��1�max � 0:2205. There the upper branch
collides with the lower (unstable) one, which itself
emerges from a homoclinic locked state at �1 � 0, where
the in-phase oscillation of Eq. (1) is linearly neutrally
stable. The maximum value of �1 predicts that the slope
of the stability boundary in Fig. 2 equals 1=��1�max �
4:535, shown there as a dashed line.

Unfortunately, when the variables are plotted versus
�1, much of the bifurcation structure is hidden. In par-
ticular, two crucial events in the genesis of the chimera
state occur when fdrift � 1, �1 � 0, and therefore col-
lapse onto a single point in Fig. 3. These events create the
x dependence in the chimera state, first in its local coher-
ence R�x� and then in its local average phase 
�x�. To see
how such spatial structure arises, it is best to treat �, not
�1, as the relevant parameter, even though it is not a true
control parameter (its turning points do not signify bi-
furcations, for example).

Figure 4 plots u��� vs � for the roots of Eq. (17).
Branches have been coded with different dashing styles
to indicate that they represent qualitatively different
states. The zero branch along the � axis, shown as a solid
0.00

1.00

0.00 0.22β1

fdrift

0.44

FIG. 3. Fraction of oscillators in the chimera state that are
drifting. Solid line, stable chimera state; dotted line, unstable
chimera state.
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FIG. 4. Solutions of Eq. (17) in the ��; u� plane. Inset panels
show typical mean drift frequencies ��x� in different regions
of solution space. Panels with arrows indicate the shape of ��x�
for transitional values of ��; u�.
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line, represents a family of spatially uniform drift states
where both R and 
 are independent of x. Such states
occur only when � � 0. They correspond to the exact
(nonperturbative) solutions of Eq. (5) given by 
�x� � 0
and R�x� � R �

����������������
2�� 1

p
, with 1

2 
 �< 1. Linear-
ization shows that this uniform drift state undergoes a
zero-eigenvalue bifurcation at � � 1

2 �2� ���2, valid for
all 0< �< 1, implying a critical value of � � 1

8 as � ! 0.
This is the first crucial event. At � � 1

8 , a spatially
modulated drift state is born. Now R depends on x. In
perturbative variables, a root with u � 0 bifurcates off
the zero branch (shown dashed in Fig. 4). Meanwhile,
v � 0, so we still have 
�x� � 0 for all x [from Eq. (11)
and Im�c� � 0]. Thus for states on the dashed branch, all
the oscillators are drifting, and maintain the same aver-
age phase, but with different amounts of coherence at
different values of x. Like the uniform drift states, these
modulated drift states occur only if � � 0.

The second crucial event occurs when the dashed
branch intersects the line u � �. Then several things
happen. The first locked oscillators are born; v and �1

become nonzero; 
 depends on x; and a stable chimera
state is created. Evaluating the integral in (17) for u � �
shows that � � 16=9�2 � 0:18 at the birth of the chimera
state.

Another way to distinguish among the various states is
shown in the insets of Fig. 4. For selected values of � we
have plotted the time-averaged frequency ��x� of the
oscillator at x, measured relative to the rotating frame.
For locked oscillators, ��x� � 0; for drifting ones,

��x� �
������������������������
�2 � R2�x�

p
� �

�����������������������
�� u cosx

p
, to leading order
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in �. Starting from the origin of Fig. 4 and moving
counterclockwise around the kidney bean, the corre-
sponding graph of ��x� is zero for the homoclinic locked
state; flat for uniform drift states; modulated and positive
for modulated drift states; and partially zero/partially
nonzero for chimera states, with the fraction of drifting
oscillators decreasing steadily as we circulate back to-
ward the origin.

We have focused on the chimera state in one dimension.
In two dimensions, the coexistence of locked and drifting
oscillators manifests itself as an unprecedented, bizarre
kind of spiral wave —one without a phase singularity at
its center [2,3]. Perhaps our analysis of its simpler coun-
terpart can be extended to shed light on this remarkable
new mechanism of pattern formation.
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