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We introduce a new physical process that can perform a complete time-reversal operation on any
electromagnetic pulse. The process uses only small refractive index modulations of linear optical
elements. No nonlinear multiphoton effects such as four-wave mixing are required. The introduced
process can be implemented on chip with standard semiconductor materials. Furthermore, the same
process can be used to compress or expand the spectrum of electromagnetic waves while completely
preserving the coherent information. We exhibit the time-reversal process by first-principles simulations

of microcavity complexes in photonic crystals.
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The capability to reverse a wave in time has profound
scientific and technological implications. Examples of
applications include detection through random media,
adaptive optics, subwavelength focusing, and dispersion
compensation [1-8]. In acoustics or electronics, where the
frequencies are low, time reversal can be accomplished by
electronic sampling, recording, and playing back [1,2].
For optical waves, on the other hand, since fields oscillate
at higher frequencies, all the mechanisms for time rever-
sal up to now required nonlinear processes such as near-
degenerate four-wave mixing [9]. Such nonlinear pro-
cesses can phase conjugate a monochromatic wave.
However, for a pulse, phase matching needs to be satisfied
over the entire pulse bandwidth, which presents a chal-
lenge to the development of nonlinear materials. In addi-
tion, such processes require high-power lasers, which
limit on-chip integration.

Recently, it was discovered that the spectrum of a
photon can be modified when the index of a photonic
crystal is modulated [10-12]. In particular, we have
shown that such a dynamic photonic system, when appro-
priately designed, can stop and release light pulses while
completely preserving coherent information in the optical
domain [12]. Here, we show that a similar system can be
used to time reverse optical pulses by only linear optics
and electro-optic modulators. No knowledge of the time-
dependent phase or amplitude of the light is necessary.
Thus electronic or optical sampling at optical frequencies
is not required. Moreover, no nonlinear multiphoton pro-
cess is required here, which greatly broadens the choices
of materials. A fundamental roadblock in developing
integrated photonics has been that each information pro-
cessing task requires a distinct material system.
Integration of multiple tasks on a single chip therefore
becomes extremely difficult. Here, we show that dynamic
photonic crystals, which can be constructed in any ma-
terial system where index can be tuned slightly (6n/n <
10~%), can perform sophisticated tasks such as time re-
versal and pulse stopping, and may eventually provide a
platform for on-chip optical information processing.
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Consider a pulse (1) = A(t, x)e'(@c'=*) + ¢.c., where
ell@ct=kx) s the carrier wave with frequency w, and wave
vector k., and A(z, x) is the complex envelope that carries
information. The envelope A(z, x) can be decomposed into
its Fourier components as

A(l, x) — zAke*i(k*k()xeiAwkt_ (1)
k

Here k is a wave vector component, and Aw(k) = w(k) —
w, is the frequency detuning. The time-reversed pulse
envelope A(—r) has a Fourier decomposition of

A(—t, X) - ZAke—i(k—kc)xe—iAwkr_ (2)
k

Thus time reversal can be achieved if the frequency of a
Fourier component with detuning Aw, is converted to a
new frequency with detuning —Aw; and if such fre-
quency conversion is performed for all Fourier compo-
nents of the pulse [9]. In order to preserve wave vector
information, such a conversion process should be transla-
tionally invariant. Therefore, the pulse should be inside
the system during the time-reversal process.

In order to achieve such frequency conversion, we
consider a system consisting of two translationally in-
variant subsystems A and B (Fig. 1). Each subsystem is a
coupled resonator optical waveguide (CROW) structure
[13,14], with nearest-neighbor evanescent coupling rates
of a4 and «ap, respectively. The subsystems also evanes-
cently couple to each other with a coupling rate of 8. The
dynamics of the field amplitudes a; and b; for cavities A
and B in the ith unit cell can be expressed using coupled
mode theory:

Lilai = iwpa; +iagla;— +a;y) +iBb; — yaa;, (3)
t

db; . . .

i iwgh; + iag(bi—y + biyy) +iBa; — ypb;. (4)
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FIG. 1 (color). Schematic of a tunable microcavity system (b)
used to time reverse light. The disks represent cavities, and ot o T
the arrows indicate available evanescent coupling between the
cavities. The system consists of two subsystems A and B \%fl 1“2”3'
reprgsented by blue and red colors. The dashed box indicates —
a unit cell. WA+ o
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Here w, and wp are the resonance frequencies, and y, ()
and yp are the loss rates for the cavities A and B, respec- wA--_\ s \
tively. For time reversal, we choose oy = —ap = —« .
such that the two CROW waveguides have opposite dis- ¥ i
persion relations. The eigenfrequencies w. ; of the sys- ot 40{ —/4&0
tem with a wave vector k can be derived as ? o-F O_—A®
1 k=-1/1 ktdk keAk
W = E[wA,k + wgp +i(ys + vp)
FIG. 2 (color). w4 and wp are the resonance frequencies for
+ \/[wA,k — wpy +i(ys — yp)P +4B%], (5  individual cavities in subsystems A and B, respectively, and k is
the wave vector. In the left panels, the red and blue curves
correspond to the bands for subsystems A and B by themselves,
where wy; = wy —2acos(kf) and wp; = wp+ P ooy Y Y

2a cos(kf) are the frequency bands of the subsystems A
and B by themselves, respectively. € is the distance be-
tween the nearest-neighbor cavities in subsystem A or
subsystem B. The shapes of the bands become indepen-
dent of losses when y, and yp are equal, which can be
adjusted externally.

In this system, a pulse can be time reversed by the
following process: We start with w4, — wg < —|B|, such
that the lower band exhibits the characteristic of the
subsystem A [Fig. 2(a)]. By placing w4 at the pulse carrier
frequency w,. [Fig. 2(a)], the lower band can accommo-
date the pulse, with each spectral component of the pulse
occupying a unique wave vector. After the pulse is in the
system, we vary w, and wp until w, — wg > |B|
[Fig. 2(c)], at a rate that is slow compared with the
frequency separation between the lower and the upper
bands. [The frequency separation reaches minimum
2|B| when w, = wg, Fig. 2(b)]. The modulation of the
cavity resonances preserves translational symmetry.
Therefore, cross talk between different wave vector com-
ponents of the pulse is prevented. Also, the slow modu-
lation rate ensures that each wave vector component of
the pulse follows only the lower band, with negligible
scattering into the upper band (i.e., the system evolves in
an adiabatic [15] fashion). Consequently, an initial state
with a wave vector k and detuning Aw; evolves into a
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respectively. The cavities in A are coupled to each other via a
negative rate. The cavities in B are coupled to each other via a
positive rate. The right panels are the band structures w, and
w_ of the coupled system. The figure includes three cases:
(@) wy — wpg K —|Bl, (b) wy = wp, and (¢) wy — wp > |Bl.

final state with the same wave vector but an opposite
detuning of —Aw;. The spectrum of the incident pulse
is thus inverted while the information encoded in the
pulse is preserved. Such a spectral inversion process gen-
erates a time-reversed version of the original pulse, which
moves in subsystem B backward to its original propaga-
tion direction, and exits the system. The modulation can
follow any adiabatic trajectory in time and can have a
narrower spectrum than the pulse.

We implement such a system in a photonic crystal, as
shown in Fig. 3. Increasing the radius of one of the high
index rods to 0.5a generates a singly degenerate mode at
wy = 0.286(27r¢/a). We construct two CROW wave-
guides, each consisting of an array of such cavities
(Fig. 3). These two CROW waveguides form the
subsystems A and B. Coupling between two neighboring
cavities of the subsystem A occurs through a barrier of
five rods (£ = 6a), with a rate of a, = —1.89 X
1073(27rc/a). The two subsystems A and B are coupled
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FIG. 3 (color). An implementation of the general system of
Fig. 1 in a two-dimensional photonic crystal. The crystal
consists of high index (n = 3.4) rods in a low index material
(n = 1.5) indicated by the gray background. The black dots
indicate the dielectric rods. These rods have a radius of 0.2a,
where a is the lattice constant. The blue and red dots represent
dielectric rods with a radius of 0.5a and with a tunable index
near 3.4. These dots form the subsystems A and B. The white
holes indicate air cylinders with radius 0.2a.

with a rate of 8 = —1.89 X 1073(27rc/a). The resonant
frequencies of the cavities can be tuned by refractive
index modulations of the dielectrics within the cavities.
In subsystem B, we introduce air cylinders with radius
0.2a in the middle of the barriers. In a CROW waveguide,
the band-edge state at k = O has significant energy in the
center of the barriers, while the band-edge state at k =
7r/€ has a nodal plane at the same location. Thus, by
adjusting the dielectric between the cavities, the disper-
sion of the CROW waveguide can be strongly affected.
Our choice for the radius of the air cylinders yields
ap = 1.80 X 1073Q27c/a) = —ay,.

We simulate a system with 100 pairs of cavities using
finite-difference time-domain (FDTD) method [16],
which solves Maxwell’s equations without approxima-
tion. The subsystems are terminated by introducing a
loss rate equal to |a, p| in the last cavities. This provides
a perfect absorbing boundary condition. Initially, we
generate an asymmetric pulse [Fig. 4(a)] by exciting the
first cavity. (The process is independent of the pulse
shape.) The excitation has a large peak at 1 = 0.57,
and a smaller peak at 1= 0.75fy,, where f,, is the
traversal time of the pulse through the system without
any index modulation. While the pulse is generated, the
subsystem A is in resonance with the pulse frequency
while the subsystem B is kept detuned. The field is con-
centrated in the subsystem A [Fig. 4(b), upper panel; t =
0.875455], and the pulse propagates at a group velocity of
2a4€. After the pulse is generated, we gradually tune the
subsystem B into resonance with the pulse while detuning
the subsystem A out of resonance [Fig. 4(a);
1.251,,5]. At the end of this process, the field is trans-
ferred from the subsystem A to the subsystem B
[Fig. 4(b), lower panel; t = 1.2#,,,]. We used a modula-
tion exp[—#*/12, 4], where t,,4 = 10/8, which is suffi-
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FIG. 4 (color). Propagation of an optical pulse through a
coupled microcavity complex in a photonic crystal system as
the resonance frequencies of the cavities are varied. The
photonic crystal consists of 100 cavity pairs. (a) The dashed
and solid black lines represent the variation of resonance
frequencies (wyp — w.)/B = 6w/B as a function of time,
respectively. The blue and the red lines represent the electro-
magnetic intensity as recorded in the middle of subsystems A
and B, respectively. 7y, is the traversal time of the pulse
through the system when no index modulation is applied.
Open circles are FDTD results, and the red and blue lines are
from coupled mode theory. (b) Snapshots of the electric field
distributions in the photonic crystal at 7 = 0.87,, and 7=
1254, in the upper and lower panels, respectively. The di-
mensions of the images along the propagation direction are
compressed. Yellow represents large positive electric fields. The
same color scale is used for both panels. The arrows indicate
the propagation direction of the pulse, and the dashed lines
represent the locations halfway in between subsystems A and B.

cient to preserve adiabaticity. The pulse at the exit of the
subsystem B shows the perfect time-reversed temporal
shape of the initial pulse at the entrance of the
subsystem A [Fig. 4(a)]. In the FDTD simulations, to
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make the total simulation time feasible, we choose a large
index modulation of about 6% and a modulation rise time
of about 10 ps. We have also performed coupled mode
theory calculations using Egs. (1)—(4), where the effects
of index change are taken into account by the modulation
of the resonant frequencies, while the coupling constants
are kept unchanged. This approach is valid as long as the
frequency change is small. The results show excellent
agreement with FDTD [Fig. 4(a)].

Coupled mode theory allows us to determine the sys-
tem requirements in practical optoelectronic devices,
since the modulation strengths (8n/n) are typically less
than 10~% [17]. The number of cavities is determined by
the pulse length and the duration of the time-reversal
process. The duration of time reversal can be reduced by
using a large B since the fastest modulation rate is limited
by B. The largest coupling 8 that can be used is limited
by the strength of index modulations. To accommodate a
pulse, the coupling constants |a4 g| need to be larger than
the bandwidth of the pulse. In a photonic band gap, both
lay sl and B decrease exponentially with the distance
between the cavities and also depend on the band gap
size. The coupling constants can therefore be designed by
choosing appropriate distances and lattice constants in
photonic crystals [18]. With a refractive index modulation
on the order of 10™* at a maximum modulation speed of
100 GHz, about 100 microcavities is sufficient to time
reverse an pulse with a 20 GHz bandwidth centered at
200 THz. Independent modulation of only two sets of
cavities (i.e., A and B in Fig. 1) is required. With electro-
optical modulation of high-Q microcavities [19], chip-
scale implementation of such systems is foreseeable. In
addition to time reversal, bandwidth compression or ex-
pansion can be achieved by choosing |ap| # |ayl|. The
use of dynamic photonic crystals thus allows new possi-
bilities for spectral engineering of optical pulses. The
underlying ideas and scheme here are applicable to all
wave phenomena, including acoustics and microwave
signals.
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