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Evaluation of Two-Photon Nonlinearity by a Semiclassical Method
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In order to discuss the two-photon nonlinearity theoretically, both photons and nonlinear materials
should be treated quantum mechanically, which usually is a heavy theoretical task. Contrarily,
nonlinear optics for classical light has been developed well and a detailed analysis is possible for
realistic complex nonlinear systems. Here we show that the two-photon nonlinearity can be evaluated
from the linear and third-order nonlinear output fields against a classical input pulse, which contains
2�1=2 photons on average.
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FIG. 1. Illustration of the input and output photons. The input
photons interact with a nonlinear optical system placed at
r � 0, and, after the interaction, propagate into the positive
direction.
When two photons are input simultaneously into a
nonlinear optical system, the two photons may interact
with each other and may show nonlinear behavior in
principle. Such two-photon nonlinearity was supposed
to be negligibly small, because the photon field per one
photon is too weak to induce significant nonlinear effects.
However, it was experimentally shown that the effective
nonlinearity of a system may be enhanced drastically by
using optical cavities, which opened the possibility of
obtaining a large nonlinear response even by a weak
input field, such as two photons [1,2]. Interest in two-
photon nonlinearity is growing rapidly, due to its appli-
cability to quantum logic gates [3] and also to advances in
the photon manipulation technique [4,5].

The photon number states belong to nonclassical states
of photons. In order to theoretically discuss the two-
photon nonlinearity, it is therefore indispensable to treat
photons, as well as nonlinear materials, in a quantum-
mechanical fashion. However, it is a heavy theoretical
task to treat both photons and nonlinear materials quan-
tum mechanically; such analyses are carried out up to
date only in cases where the nonlinear systems are simple
ones, such as a bare two-level atom [6] and a two-level
atom placed in a cavity [7]. In the field of conventional
nonlinear optics, in contrast, the nonlinear optical re-
sponses have been theoretically investigated in various
complex systems, but the analyses are based on the semi-
classical formalism, where light fields are always treated
classically [8]. Therefore, it seems that vast wisdom ac-
cumulated in the conventional nonlinear optics cannot be
applied in consideration of the two-photon nonlinearity.

The objective of the present study is to clarify the link
between the two-photon nonlinearity and the conven-
tional nonlinear optics. More concretely, we are showing
that a parameter representing the degree of two-photon
nonlinearity can be evaluated from the results of semi-
classical calculations, which are usually much simpler
tasks than fully quantum-mechanical ones. We propose
a formula which connects the semiclassical results to the
two-photon nonlinearity. The validity of the formula is
0031-9007=04=93(17)=173601(4)$22.50 
demonstrated taking an atom-cavity system as an ex-
ample of nonlinear optical systems.

The situation considered in this study is illustrated in
Fig. 1. Two input photons propagate in one-dimensional
space into the positive direction and interact with the
nonlinear system located around the origin. We assume
that photons are not lost by the interaction and, therefore,
two photons always appear in the output port. Focusing
on the case where the two photons have identical wave
function f�r� in the input state, the input state vector is
given by

j�ini �
Z

dr1dr2f�r1�f�r2�a
y
r1a

y
r2 j0i; (1)

where ayr is the photon creation operator at r. f�r� is
localized in the negative region and is normalized asR
drjf�r�j2 � 2�1=2. Similarly, we denote the output state

vector by

j�outi �
Z

dr1dr2~g�r1; r2�a
y
r1a

y
r2 j0i; (2)

where ~g�r1; r2� is localized in the positive region and
satisfies ~g�r1; r2� � ~g�r2; r1�. It should be noted that the
output wave function ~g�r1; r2� is, in general, no more
factorizable; i.e., the correlation between two photons
2004 The American Physical Society 173601-1
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may be generated after the interaction at the nonlinear
system.

We here define the measure of nonlinearity appearing
in the output two-photon wave function. As is well
known, the field amplitude (the expectation value of the
field operator) is zero for the photon number states, so the
conventional characterizations of optical nonlinearity
cannot be applied in the present case. The nonlinearity
appears, not in the field amplitude, but in the wave
function of photons. Thus, we quantify the nonlinearity
by comparing the output wave function with the linear
output wave function [7]. Using the one-photon output
wave function �f�r�, which is a resultant of a one-photon
input

R
drf�r�ayr j0i, the linear output wave function is

given by

j�L
outi �

Z
dr1dr2 �f�r1� �f�r2�a

y
r1a

y
r2 j0i: (3)

Such a linear output is expected when the nonlinearity of
the system is completely removed. We employ the overlap
	 between j�outi and j�L

outi as the measure of the non-
linearity;

	 � h�L
outj�outi � 2

Z
dr1dr2 �f

	�r1� �f
	�r2�~g�r1; r2�: (4)

The nonlinearity parameter 	 always lies in the unit
circle (j	j 
 1) and becomes unity when the response
of the system is completely linear. Thus, deviation of 	
from unity represents the nonlinearity in the output wave
function. The 
 nonlinear phase shift, which is required
for a conditional-NOT gate, is attained when 	 reaches
�1. In the following part of this Letter, we are showing
that 	 can be evaluated from the results of semiclassical
theory, bypassing fully quantum-mechanical calcula-
tions, which are usually heavy theoretical tasks.

In the semiclassical framework, the light field is treated
classically; i.e., the field is characterized by its c-number
amplitude. We now consider a situation where a classical
field with amplitude f�r� is prepared as the input state.
The corresponding input wave function is given by

j
ini� exp
�
�
Z
drjf�r�j2=2

�
exp

�Z
drf�r�ayr

�
j0i; (5)

which is composed by superposition of different number
states, as is characteristic to the classical (coherent) state.
The zero-, one-, and two-photon components are trans-
formed, after the interaction with the nonlinear system,
repsectively, as

j0i ! j0i; (6)

Z
drf�r�ayr j0i !

Z
dr �f�r�ayr j0i; (7)

Z
dr1dr2f�r1�f�r2�a

y
r1a

y
r2 j0i!

Z
dr1dr2~g�r1; r2�a

y
r1a

y
r2 j0i:

(8)

Thus, up to two-photon states, the output wave function is
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given by

j
outi � exp
�
�

Z
drjf�r�j2=2

��
1�

Z
dr �f�r�ayr

� 2�1
Z

dr1dr2~g�r1; r2�a
y
r1a

y
r2

�
j0i: (9)

Using this output wave function, the output field ampli-
tude fout�r� � h
outjarj
outi is given, up to the third-
order response, by

fout�r� � f�1�out�r� � f�3�out�r� �O�f�5�out�; (10)

f�1�out�r� � �f�r�; (11)

f�3�out�r� �
Z

dr0 �f	�r0�~g�r; r0� � �f�r�
Z

dr0j �f�r0�j2: (12)

The linear output f�1�out�r� is identical to the one-photon
output wave function �f�r�, while the third-order output
f�3�out�r� contains contracted information of the two-photon
output wave function ~g�r1; r2�. Remembering that �f�r� is
normalized as

R
drj �f�r�j2 � 2�1=2, it is confirmed that the

following quantity,

	0 � 1� 2
Z

dr�f�1�out�r��
	f�3�out�r�; (13)

is identical to the nonlinearity parameter 	 defined by
Eq. (4). Thus, we can evaluate the nonlinearity parameter
	 from f�1�out�r� and f�3�out�r�; these quantities can be deter-
mined, within the semiclassical theory, as the linear and
the third-order output field against a classical input field
f�r�, which contains 2�1=2 photons on average.

In order to check the validity of the above semiclassi-
cal evaluation, we investigate a concrete example. As an
example of a nonlinear system, we employ a two-level
system (called an ‘‘atom’’) placed inside of a cavity. The
Hamiltonian of the system is given, putting �h � c � 1,
by

H � !a���� � g���c� cy��� �!cc
yc

�
Z

dkkbyk bk �
Z

dk�
������������
�=2


p
cybk � H:c:�; (14)

where ��, c, and bk are the annihilation operators for
the atom, cavity mode, external photon mode, respec-
tively. !a and !c represent the frequencies of the atom
and the cavity mode (hereafter, !a � !c for simplic-
ity), g represents the atom-cavity coupling, and � denotes
the damping rate of the cavity mode into the external
field. The weak (strong) coupling regime is specified by
�=g * 4 (�=g & 4). In this model, due to the neglect of
the radiative loss into the noncavity modes (usually de-
noted by �), the input photons always appear in the output
port. The real-space representation of the external field,
br, is obtained as the Fourier transform of bk;

br � �2
��1=2
Z

dkeikrbk: (15)
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FIG. 2. The forms of the linear (solid curve) and third-order
nonlinear (dashed curve) components of the output field. The
thin dotted line shows the input field. A moving coordinate
system at the light velocity is employed for the horizontal axis.
The cavity parameter is �=g � 5 (weak coupling regime), and
the parameters for the input pulse are chosen as g2d=� � 1 and
q � 0. The input and output fields become real after removing
the natural phase, ei!cr.
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This indicates that the interaction between the external
field and the cavity mode takes place locally at r � 0. In
fact, the above Hamiltonian describes the one-sided cav-
ity, where the external field extends only in the positive r
region. However, by regarding the incoming photons
(which actually propagate in the positive r region into
the negative direction) to propagate in the negative r
region into the positive direction [9], this system may
be reduced to the situation illustrated in Fig. 1.

Using this system, we evaluate the nonlinear parame-
ter 	 by the following two different methods and com-
pare the results. In one method, after calculating the
output wave functions �f�r� and ~g�r1; r2� in a fully
quantum-mechanical fashion, 	 is rigorously evaluated
by Eq. (4). An advantage of using this simple system is
that the analytic forms of one- and two-photon propaga-
tors are known [7]. In the other method, we calculate the
linear and nonlinear components of the output field
against a classical input light pulse and evaluate 	0 by
Eq. (13).

The linear and nonlinear optical responses to a classi-
cal light pulse are calculated as follows. With the help of
the input-output formalism [10], the Heisenberg equa-
tions for the cavity mode and the atom are given, respec-
tively, by

_c � ��i!c � �=2�c� ig�� � i
����
�

p
bt0�t�t0�; (16)

_�� � �i!a�� � igc� 2ig����c; (17)

where the initial moment is denoted by t0. The third term
on the right-hand side of Eq. (17) is the origin of the
nonlinearity. The output field is given, in terms of the
input field and the cavity mode, by

br�t� � �br�t�t0�t0� � i
����
�

p
c�t� r�: (18)

The above equations are rigorous equations of motion in
the operator form. The semiclassical theory is obtained by
approximating the field operator br�t0� for the input field
by the c-number amplitude f�r�. Then, from Eqs. (16) and
(17), we derive the equations of motion for expectation
values of operators composed by c;�� and their conju-
gates. (For our purpose of determining up to third-order
response, it is sufficient to treat the following quantities:
h��i, hci, h����i, h��ci, hcyci, h��ci, hcci, h����ci,
h��cci, hcy��ci, and hcycci). The equations of motion
for these quantities are solved perturbatively. The ampli-
tude of the output field is given, taking the expectation
value in Eq. (18), as fout�r; t� � �f�r� t� t0� �
i

����
�

p
hc�t� r�i. The first- and third-order components of

the output field are given, respectively, by

f�1�out�r; t� � �f�r� t� t0� � i
����
�

p
hc�1��t� r�i; (19)

f�3�out�r; t� � i
����
�

p
hc�3��t� r�i; (20)

where hc�1�i and hc�3�i represent the linear and the third-
order nonlinear responses of the cavity mode. The forms
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of f�1�out and f�3�out are plotted in Fig. 2, where a Gaussian
wave packet is chosen for input photons:

f�r� �
�

1


d2

�
1=4

exp
�
�

�
r� a
d

�
2
� i�q�!c��r� a�

�
;

(21)

which is characterized by the coherence length d and the
central frequency q (measured from !c). a�<0� is an
irrelevant parameter denoting the initial position of the
packet. From f�1�out and f�3�out, 	

0 is evaluated by Eq. (13).
Comparison between rigorous quantum-mechanical

evaluations (solid lines) and semiclassical evaluations
(dotted lines) is carried out in Fig. 3. In Fig. 3(a), the
atom-cavity system is in the weak coupling regime
(�=g � 5). In this case, large nonlinearity is obtained
by photons with q � 0. In Fig. 3(b), the atom-cavity
system is in the strong coupling regime (�=g � 0:5).
Then, photons with q � 0 are no more resonant and small
nonlinearity results; large nonlinearity is obtained by
photons with q ’ �g, which are tuned to the Rabi-split
frequency. The optimum conditions for obtaining large
nonlinearity have been clarified in Ref. [7]. This figure
shows the validity of the semiclassical evaluation; the
two-photon nonlinearity can be evaluated by the semi-
classical method under any choice of parameters. The
slight deviations of the semiclassical evaluation from
the rigorous results are ascribed to the semiclassical
approximation, in which the operator br�t0� for the input
field is replaced with the c-number amplitude f�r�.
Although this approximation is validated when the input
field is intense, it becomes less valid when the input field
is weak, as is considered here. However, it should be noted
173601-3
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FIG. 3. Dependence of the two-photon nonlinearity 	 on the
pulse length d. The frequencies q of input photons are indi-
cated. The atom-cavity system is in the weak coupling regime
(�=g � 5) in (a) and in the strong coupling regime (�=g � 0:5)
in (b). The rigorous evaluations are plotted by the solid lines,
and the semiclassical evaluations are plotted by the dotted
lines.
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that the above replacement is rigorous in the limit of
infinitely weak coupling, �=g ! 1. This explains the
fact that the deviations are smaller in the weak coupling
regime than in the strong coupling regime.

Finally, we comment on the applicability of the semi-
classical evaluation. In deriving Eq. (13), it is assumed in
Eqs. (2), (3), (7), and (8) that the input photons appear in
the output port without leaving any trace (elementary
excitations) in the nonlinear material, and no other
system-dependent features are used. It is therefore ex-
pected that this evaluation method is widely applicable
to nonlinear systems satisfying the above condition. Even
for the dissipative nonlinear systems exposed strongly to
environmental agents, we can use this method for the
estimation of the two-photon nonlinearity in the
dissipation-free limit of such systems, which would still
be informative in designing quantum-optical devises.
This method would be particularly valuable in evaluating
173601-4
the two-photon nonlinearity in complex nonlinear sys-
tems with many mechanical degrees of freedom, where
full quantum-mechanical analyses are much more diffi-
cult than semiclassical ones. It should also be noted that
the use of this method is restricted to cases where the
input two-photon wave function is separable; this is be-
cause the entangled input state has no correspondent
classical state.

In summary, we have proposed a method to evalu-
ate the two-photon nonlinearity using a semiclassical
method, bypassing full quantum-mechanical calcula-
tions. The prescription is as follows: calculate the linear
and the third-order nonlinear components of the output
field against a classical input pulse containing 2�1=2

photons on average; then, the two-photon nonlinearity
is evaluated by Eq. (13). Taking an atom-cavity system as
an example of nonlinear systems, we have compared
the semiclassically evaluated values with rigorous values
in Fig. 3, which demonstrated the validity of the evalu-
ation method. Thus, the link between the conventional
nonlinear optics and the quantum-mechanical optical
nonlinearity has been clarified. This would be helpful
in utilizing vast knowledge accumulated in the field of
nonlinear optics for the investigation of two-photon
nonlinearity and other quantum-mechanical optical non-
linearities.
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