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Lack of Hohenberg-Kohn Theorem for Excited States
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For a given excited state there exist densities that arise from more than one external potential. This is
due to a qualitatively different energy-density relationship from that of the ground state and is related to
positive eigenvalues in the nonlocal susceptibility for excited states. Resulting problems with the
generalization of the density functional methodology to excited states are discussed.
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Kohn-Sham density functional theory (DFT) [1] now
enjoys enormous popularity as an electronic structure
method in solid-state physics, quantum chemistry, and
materials science. A cornerstone of its rigorous foundation
is the first part of the Hohenberg-Kohn (HK) theorem [2]
that demonstrates that, for given interparticle statistics
and interaction, a ground-state density can be produced
by at most one external one-body potential. This one-to-
one correspondence implies that all properties of an elec-
tronic system and, in particular, its ground-state energy
are functionals of the ground-state density. Application of
the same logic to fictitious noninteracting electrons pro-
duces the Kohn-Sham (KS) equations, whose solution is
typically very much faster than traditional wave function
approaches. One path to excited-state properties that has
become popular [3] recently is time-dependent DFT
(TDDFT) [4]. By studying the frequency-dependent re-
sponse of the ground state within TDDFT, one finds
corrections to the transition frequencies of the Kohn-
Sham ground-state potential [5]. Variational alternatives
include ensemble DFT [6,7], variation of bifunctionals
[8], change in self consistent field [9], and others [10,11]
which we briefly discuss later. Such approaches do not
suffer from a tremendous sensitivity to the orbital posi-
tions of the underlying ground-state KS potential [12] and
should provide a valuable alternative to TDDFT in situ-
ations where the excited-state density differs substan-
tially from its KS analog, such as in charge-transfer
excitations [13].

A naive and appealing idea is to imagine an excited-
state energy functional of the excited-state density. Then
an excited-state calculation could proceed analogously to
a ground-state calculation, which would be convenient for
mapping excited-state energy surfaces.

In the present Letter, we address the relationship be-
tween energy and density for excited states, about which
little is known, in contrast to the ground-state problem.
We consider only Hamiltonians with local one-body po-
tentials. For example, is the excited-state energy a func-
tional of the excited-state density? (It is a functional of
the ground-state density, by virtue of the potential being
unique.) To answer this simple question, the lower panel
of Fig. 1 shows the density of two same-spin particles,
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PACS numbers: 31.15.Ew, 71.15.Qe

noninteracting, in a one-dimensional box. This is a text-
book problem, with the lowest and third-lowest energy
levels occupied. In the upper panel, the dashed line is that
of a different potential for which this density is also the
first excited-state density (how these potentials were
found is described below). The corresponding wave func-
tions are not degenerate or unusual in any way, and there
are many such examples. Clearly, the potential is not
unique, and so the excited-state energy is not a functional
of the excited-state density, even for a given level of
excitation (In contrast to others [14], our analysis remains
within a fixed level of excitation or orbital occupation.)
The rest of this Letter explains how and why this happens.
We analyze the relationship between energies and den-
sities for excited states. This is qualitatively different to
the ground-state case and implies difficulties with the
extension of formal constructions, such as the adiabatic
connection, to excited states.

To understand how more than one potential can yield a
given excited-state density, and more importantly, how
the number of such potentials varies as the density is
altered, we first prove an elementary theorem concerning
the linear susceptibility of the system. Consider any finite
number N of electrons in a large box with Hamiltonian
H. The susceptibility of the j-th state is
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FIG. 1. Two potentials (upper panel) yielding the same first
excited-state density (lower panel).
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where H|W;) = E;|¥;), p(r) is the density operator, and

V(r) is the one-body potential. For convenience we
choose the states |W;) to be real. Also, at this point these
states may be one-particle orbitals or many particle
states. We ignore possible degeneracies: E; > E;Vj > i.
For ensembles x(r,r’) = > ;n;x,(r, r'), where the weights
n; = 0 are nonzero for finitely many eigenstates:
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Define real eigenvectors and eigenvalues of y(r, r’) by
[@rxn e = dut,w G)

choosing their normalization [d*r[£,(r)]* =1. The
index @ = 1,2, 3, ..., labels eigenstates in nonincreasing
order of eigenvalue. Let M denote the number of non-
negative eigenvalues A, and L the number of terms for
which o;; = —sgn(g’/:gi) < 0. A constant shift in the

external potential, or potential changes having support
only where the density is zero, are both eigenvectors of
x(r, ') with eigenvalue zero. We denote these eigenvalues
as trivial and do not include them in M.

Theorem: Discounting trivial eigenvectors, the number
of non-negative eigenvalues M cannot exceed L.

Proof: Begin by defining £, = fd3r§a(r)[)(r) and for
all i # j the set of numbers vy = (‘If,-léalllfj) | 2

E,~E;
Then Egs. (2) and (3) yield
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Now consider the vectors {v, i jlo;; <0}, one for each a
and 1 = @« = M. We show below that they are linearly
independent. Since they are L-dimensional, there can at
most be L of them, so that M = L.

To show linear independence, imagine a set of numbers
cq suchthat 3 M ¢ vd = 0 for all i, j with o;; < 0. By
multiplying Eq. (4) by ¢, cg and summing over a and 8

M
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Since the first expression is non-negative, while the last
expression is nonpositive, both must vanish If, however
the last term is zero, then for all i # j, Z cav’cf =

a§a|\I’ > = 0. For

M
= Z Czcﬁ)‘a5a,8
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Hence whenever n; # n;, (¥; IZ
all j such that n; # 0 it follows > M cafaI\I’]> =
cHIW;) + Z#j;ni:njc |'¥,), orin short 3" co & W) =
C|W). The matrix C is Hermitian and not a function of r.
Diagonalizing C leads to ¥ M ¢,&,I¥;) = &¥)). In
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real space the eigenvectors of y(r, r’) are multlphcatlve
functions and, therefore, for all j, > » 1 afa = & plus
possible terms with support only where the density of the
j’th state is zero. Such an equation exists for all j, so
except for pathological cases (e.g., all n; = 1 for systems
with finite dimension), ¥ ¥ c,&, = c plus terms with
support only where the total density is zero. In other
words, a sum of eigenvectors is equal to a sum of the
trivial eigenvectors of y(r,r’). Since eigenvectors are
linearly independent, this is only possible if all ¢, = 0,
which in turn proves the linear independence of the
vectors {vg, ijla',-j < 0}.

Applying this theorem to the ground state, we find no
eigenvalue can be non-negative except for the trivial ones.
This result is not implied by the Hohenberg-Kohn theo-
rem (e.g., Ref. [15]) because HK does not exclude the
possibility of a nontrivial zero eigenvalue, with unique-
ness being produced by a higher-order response.
Additional analysis as presented here is needed (see
also [16]).

Although our illustrations are for two noninteracting
electrons in one dimension, the proof applies to any
quantum system, including interacting electrons in three
dimensions. In particular, for Slater determinants the
response function becomes that of an ensemble of one-
electron orbitals with weights {n;} =1 for occupied
single-particle orbitals, and zero, otherwise. A prominent
use of ensembles is to find approximations to excited-state
energies. The proof of the validity of a HK theorem for a
weighted ensemble of ground and excited states requires
that the weights must be monotonically decreasing [6]. In
that case, o;; is positive for every pair i and j, and y has
only negative eigenvalues. This is not true anymore for
nonmonotonically decreasing weights. Our examples of
excited states of two noninteracting same-spin particles
are ensembles of a one-particle problem whose weights
violate the rule of monotonically decreasing weights.
Thus our examples show that ensemble theory cannot
be formulated for such extreme cases.

To show that nonuniqueness of excited-state potentials
is common and not an artifact of one-dimensional parti-
cles in a box, we have also studied the 1s'2s? configura-
tion of hydrogen atom orbitals. The density is shown in
the upper panel of Fig. 2. Below it, we show three poten-
tials for which this density is generated by the same
occupation of single-particle orbitals. The potentials are
very similar, and when viewed as a nonground state KS
scheme, it is far from obvious which of these should be
considered the ‘“true” one. We believe such demonstra-
tions are possible for most electronic densities.

Next we discuss how this theorem allows us to under-
stand the origin of Fig. 1, whose density we denote as
p4(x). To find a potential for which it is a specific excited-
state density we choose a smooth starting potential
and calculate its density pzr(x). We also calculate its
susceptibility. We apply the inverse susceptibility to
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FIG. 2. Lithium-like occupations of a —1/r potential and

similar alternatives yield the 1s!2s? density shown above.

pa(x) — pr(x) to estimate the change in potential needed
to produce the target density p4(x). We repeat this proce-
dure with the new potential, and iterate to convergence.
Since a shift in the constant in the potential is always a
zero eigenvector of y, the constant contribution has to be
disregarded when inverting the susceptibility. In this way,
by varying the starting potential, we found three poten-
tials, denoted vg)(x), vgz) (x), and its mirror image, US)(X)
for each of which p4(x) is a first excited-state density. The
three susceptibilities corresponding to these three poten-

tials have only negative eigenvalues except one, XS)’ that
has one positive eigenvalue. Then consider the linear

combination of v,(ql)(x) with vff) (x):
Vpgax) = (1— a)vl(ql)(x) + avf)(x). (6)

Assuming continuity of the eigenvalues of y as a function
of a, there exists some value of & for which the potential
and the y of its corresponding first excited state has a zero
eigenvalue. Label this potential and its first excited-state
density by B. We show below that this corresponds to a
fold in the relationship between energies and densities.
Such folds exist only for excited-state configurations and
divide the space of densities into regions labeled by the
number of potentials that can represent that density. In
general, when interpolating between two systems with the
same density, one only crosses a fold if the number of
positive eigenvectors changes.

Similarly, we can repeat this process for vg) (x) and

vf)(x) to find another fold point E, where pg(x) is the
mirror image of pg(x). We then define a line in density
space between the two fold points:

p(x) =10 = Dpe(x)/2+ 1+ Dpp(x)/2. (1)

In Fig. 3, we plot the transition frequency, i.e., the energy
difference between the first excited state (levels one and
three occupied) and the ground state (levels one and two
occupied) for the potentials we have found for each
density (there may yet be more). To understand this curve,
begin in the top left hand corner, for { < —1 [point A in
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FIG. 3. Transition energies E; — E as a function of the first
excited-state density parameterized by { (see text).

Fig. (3)]. For such a density, there is only one potential,
whose y has no positive eigenvalues. Follow this curve to
{ = 1 (point B), where an eigenvalue passes through zero,
producing one positive eigenvalue. The curve runs back to
point C at { = —0.9, where there is another fold, and the
maximum eigenvalue becomes negative once more, in
accordance with our theorem. This curve runs until { =
0, and the whole process reverses itself (points D, E, and
F).In Fig. 4, we plot the densities at several values of { to
emphasize that there is nothing unusual about them. Their
orbitals and eigenvalues are equally innocuous.

In the middle section of the curves, || < 0.9, each
density has (at least) five corresponding potentials. At
{ = 0, these consist of one symmetric potential, two
distinct nonsymmetric potentials, and their mirror im-
ages. As the first fold is approached, the (originally)
symmetric potential merges with one of the others, and
for 0.9 = |{| < 1, only three potentials remain. As || —
1, two more merge and vanish, so that for || = 1, there is
only one potential.

What happens at a fold point in density space? Are
there discontinuous jumps in quantities as two potentials
merge? In Fig. 5, we plot the individual kinetic and
potential contributions to the energy. Since a constant
shift of the potential has no effect on the energy-density
relationship we choose the potentials such that the
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FIG. 4. Densities at different values of { [see Fig. (3)].
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FIG. 5. E;,V; = [d’rv(r)p,(r) and T as a function of { as
in Fig. (3).

ground-state energy is zero. Therefore in this gauge, E; is
equal to the transition frequency. The figure shows that
the kinetic contributions for the two distinct potentials
merge at the fold point, having the same value and slope
there. On the other hand, the potential contributions each
have slope of infinite magnitude, producing a smooth
curve. If y is invertible (i.e., has no zero eigenvectors)
the energy-density relationship is locally one-to-one and
8V /8p(r) is well defined. So for the potential energy and
the total energy we get 8V /8p(r) =

6 / / N , _ . .
mfa@r U(l' )P(I‘)—v(r)-i-[p(r )X l(r’r)dgr (8)

8E ([, , O6E bvu(r)
5p(r) f " 5u(r) 3p(1)
plus terms due to the gauge of the external potential.
Since x(r,r’) has a zero eigenvalue at the fold point,
5?7‘(/1') and % will diverge at ¢ = 1. However,
8F/8p(r) = —u(r), where F = E — V. Despite the ab-
sence of a density functional, and Eqgs. (8) and (9) do not
imply one, this result is identical to the ground-state DFT
case. Curves for E; and V| vs. { are continuous and
exhibit folds, Fig. (3), provided some universal gauge
condition to define arbitrary constants of potentials is
chosen, e.g., Ey = 0 in this case. At the folds two different
branches merge continuously, and beyond { = 1 the only
existing potential is discontinuously different, producing
discontinuities in the density-potential relationship.
Therefore, even along a specific branch, a limited
excited-state density functional cannot be defined.

We have discussed the problems due to nonuniqueness
of the excited-state potentials [Fig. (1)] and its implica-
tions for ensembles [Eq. (2)]. We close with the implica-
tions due to folding for various treatments of excited
states within density functional theory.

An important tool in DFT has been the adiabatic
connection [17,18], in which a coupling constant A is
inserted in front of the electron-electron repulsion, and
the one-body potential is made A-dependent so as to keep
the ground-state density fixed. This procedure therefore
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also defines all the excited-state energies and densities at
each value for A, and is used, for example, in defining the
A-dependent susceptibility used in expressing the
exchange-correlation energy in terms of the fluctuations
of the ground state, a common starting point for random-
phase approximation treatments within DFT [19].
Difficulties can arise when the first excited-state energy
crosses that of the ground state, and it has been suggested
[10] that these can be avoided by remaining on a continu-
ous curve, i.e., following the energy of what is now an
excited state. Our results show a danger inherent in such a
procedure. If a fold is encountered, both the potential
generating this density as an excited state and its corre-
sponding energy will change discontinuously as the fold
is traversed.

Related problems appear with an excited-state variant
of the adiabatic connection (called the generalized adia-
batic connection) proposed by Gorling [11], in which the
density of an excited state is held fixed while A varies. If
the folds in density space occur at different densities for
different values of A, and there is no reason to think
otherwise, again a discontinuous change in potential
and energy occurs when a fold is reached.
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