
VOLUME 93, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S week ending
22 OCTOBER 2004
Rotating Black Holes in Higher Dimensions with a Cosmological Constant
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We present the metric for a rotating black hole with a cosmological constant and with arbitrary
angular momenta in all higher dimensions. The metric is given in both Kerr-Schild and the Boyer-
Lindquist form. In the Euclidean-signature case, we also obtain smooth compact Einstein spaces on
associated SD�2 bundles over S2, infinitely many for each odd D � 5. Applications to string theory and
M-theory are indicated.
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In recent years there has been a strong interest, in both
physics and mathematics, in higher-dimensional solu-
tions of Einstein’s equations. Black holes are among the
most important exact solutions in general relativity, and
so solutions describing higher-dimensional black holes
are of particular significance. The first general rotating
black hole solutions in higher dimensions were given by
Myers and Perry [1], in the case that the cosmological
constant vanishes. These have since been used extensively
in string and M-theory calculations. More recently, inter-
est has grown in Einstein metrics with a cosmological
constant, both cosmologically in four dimensions, and in
fundamental theories of nature in higher dimensions. In
fact, in four dimensions, Carter [2] had already found a
generalization of the Kerr solution with a cosmological
constant and asymptotically de Sitter or anti–de Sitter
(AdS) boundary conditions (the Kerr–de Sitter metric).
Hawking, Hunter, and Taylor-Robinson [3] generalized
Carter’s solution to five dimensions with arbitrary angu-
lar momenta and to all dimensions with just one nonzero
angular momentum parameter.

In a recent development, Tasinato et al. have shown that
the Kerr solutions in five dimensions or higher (with zero
cosmological constant) may be interpreted as time-
dependent S-brane solutions of string or M-theory [4].
(See also related work on twisted S-branes and their rela-
tion to Kerr solutions in four dimensions [5] and in higher
dimensions [6].) An important question is how the results
of this work on time-dependent cosmological back-
grounds in string and M-theory are affected by a non-
vanishing cosmological term. This requires explicit solu-
tions generalizing the higher-dimensional Kerr solution
to the case when the cosmological constant is nonzero.

Another area of string and M-theory where solutions
with nonvanishing cosmological constant are needed is in
the AdS/CFT (conformal field theory) correspondence.
Following the pioneering work of [3] in five dimensions,
the principal remaining cases of interest are in dimen-
sions six and seven. An important application of our new
metrics is to study the thermodynamics of rotating black
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holes in higher-dimensional antide Sitter backgrounds,
especially those of relevance for the AdS/CFT correspon-
dence. Recent work in [7], using our new metrics, has
provided complete results for the masses and other ther-
modynamic quantities in all dimensions. This has clari-
fied certain inconsistencies in previous literature, and in
fact, having the results available in all dimensions has
also helped to settle some previous residual inconsisten-
cies in four dimensions.

A further striking application of the Kerr–de Sitter
metrics is in the Euclidean-signature regime, where in
four dimensions they provided, by analytic continuation,
the first nonsingular and compact inhomogeneous
Einstein metrics with positive-definite signature and
positive scalar curvature [8]. One application of this
metric is as an instanton mediating creation of the uni-
verse ‘‘from nothing’’ [9]. This has been generalized in
[10] to five dimensions, producing an infinite family of
nonsingular Einstein metrics which, for example, using
the AdS/CFT correspondence, provide infinitely many
supersymmetry-breaking ground states for N � 4 super-
symmetric Yang-Mills theory. In a recent development, it
has been shown that in limiting cases, our new Kerr–
de Sitter metrics in the Euclidean regime give rise to
infinite families of Einstein-Sasaki metrics [11], which
can provide supersymmetric backgrounds of importance
for the AdS/CFT correspondence.

Motivated by these considerations, we present here our
basic results for rotating black hole metrics in all higher
dimensions with a cosmological constant and with arbi-
trary angular momenta. A more detailed treatment is
given in [12].

Let the dimension of spacetime be D�2N���1�4,
with N � ��D� 1�=2� being the number of orthogonal
spatial 2-planes, each of which can have a rotation pa-
rameter ai. Thus � � �D� 1� mod 2. Let �i be the N
azimuthal angles in the N orthogonal 2-planes, each with
period 2	. Let the remaining N � � spatial dimensions
be parameterized by a radial coordinate r and by N � �
‘‘direction cosines’’ �i obeying the constraint
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where 0 	 �i 	 1 for 1 	 i 	 N, and (for even D)
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The Kerr–de Sitter metrics we have found satisfy
R�� � �D� 1��g��, and are given in Kerr-Schild form
[13] by
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We have been led to these metrics by putting the
previously known D � 4 and D � 5 Kerr–de Sitter met-
rics into Kerr-Schild form, and making natural general-
izations to higher dimensions. We have explicitly checked
that they obey the Einstein equation for all physically
interesting cases D 	 11. Since D 	 11 is not distin-
guished in any way in the general expressions for the
metrics, we are confident that they are valid in all dimen-
sions. Furthermore, if all rotations ai except one are set to
zero, our expressions reduce to those obtained in [3] in
any dimension. Finally, we note that if the cosmological
constant is set to zero, our metrics reduce to those found
by Kerr [14] and by Myers and Perry [1].

One may eliminate cross terms with dr by passing to
generalized Boyer-Lindquist coordinates

dt � d��
2Mdr

�1� �r2��V � 2M�
;

d�i � d’i �
2Maidr

�r2 � a2i ��V � 2M�
:

(7)

The Kerr–de Sitter metrics then have the form
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where V�r� is defined by
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The Kerr–de Sitter metrics have Killing horizons at
r � rH, where V�rH� � 2M and where the Killing vector
field
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coincides with the null generator of the horizon. The Kerr-
Schild coordinates extend through the future horizon. By
contrast, the Boyer-Lindquist coordinates are valid either
outside the horizon or inside the horizon. It is the latter
case, in which r plays the role of the time coordinate, that
is relevant for time-dependent S-brane solutions.

On the horizon, the Killing vector l obeys l�r�l� �
"l�, where the surface gravity, constant on each con-
nected component of the horizon, is given by

" � rH�1� �r2H�
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The area of the horizon is given by

AH � AD�2r
�
H � 1
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where

A m �
2	�m�1�=2

���m� 1�=2�
(13)

is the volume of the unit m sphere.
We can pass from the Lorentzian-signature Kerr–de

Sitter metrics (8) to Euclidean-signature Einstein metrics
by making the Boyer-Lindquist time coordinate � and the
rotation parameters ai all purely imaginary. The generic
local Einstein metrics do not give smooth complete com-
pact Einstein spaces, but for � > 0, we can choose dis-
crete special values for ai andM, as in four dimensions in
171102-2
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[8] and in five dimensions in [10], to get complete non-
singular metrics.

The idea is that i� becomes an angular coordinate with
the appropriate period required to avoid a conical singu-
larity at one root of V�r� � 2M, say at r � r1. We call this
the black hole horizon, by analogy with the Lorentzian-
signature case. If r ranges from r1 to a second root of
V�r� � 2M, say at r � r2 (which we shall call the cosmo-
logical horizon), we require the same period of i� to avoid
a conical singularity at r � r2. Thus the surface gravities
at r1 and at r2 must be identical, which can be accom-
plished by choosing M so that r1 approaches r2. In this
limit grr diverges in just the right way that the proper
distance between the two roots or horizons approaches a
nonzero finite limit. In the limiting process, the period of
i� goes to infinity, but the metric length of its orbit
remains finite. After appropriately rescaling r and i�,
one arrives at a finite metric.

The remaining conditions for regularity are that in
each 2-plane with a nonzero rotation parameter ai, the
black hole horizon rotates an integer number ki times,
relative to the cosmological horizon, during one period of
the Euclidean time coordinate i�. More details are given
in [12]. These conditions place N constraints on the N
rotation parameters ai.

One obtains [12] smooth compact Einstein metrics of
the form

�ds2 �
�1� A�z��i�

4A� 2A2 � 2B
�d(2 � sin2(d 2�

�
XN��
i�1

�1� A�d�2
i

1� A� xi
�

A
w��i�

 XN��
i�1

�1� A��id�i

1� A� xi

!
2

�
XN
i�1

�1� A��2
i

1� A� xi
�d’i � kisin2

(
2
d �2

�
1� A
z��i�

"XN
i�1

���������������
xi � x2i

q
�2
i

1� A� xi
�d’i � kisin

2 (
2
d �

#
2

;

(14)
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and where the parameters xi must be chosen so that each
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is an integer.
In terms of the constant parameters xi defined here and

the resulting auxiliary constants A and B, the roots of
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V�r� � 2M and the parameters of the Kerr–de Sitter
metric (8) are given by
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One can see that for a real Euclidean metric, one
needs either all xi 	 �1 or all xi > 0. In the former
case, we showed [12] that all but one xi must be �1,
corresponding to only one ai and ki nonzero, and that the
only nonzero ki allowed is ki � 1. The resulting solutions
were first given in [8] for D � 4 and in [10] for higher D.
In the latter case, where all xi are positive, which is
allowed only for odd D, we showed [12] that all possible
sets of purely positive integers ki lead to unique solutions
for xi > 0 and to unique regular compact Einstein met-
rics, though k1 � k2 � 1 for D � 5 leads to x1 � x2 � 1
rather than to finite solutions for the xi. This and certain
other cases in which one or more xi � 1 also lead to
regular metrics [10].

Except for theD � 5 solutions with k1 � 1 and k2 � 1,
which were given by [10], our compact Einstein metrics
with all ki > 0 in odd D are new. Because all sets of
positive ki are allowed for all odd D � 5 we get an
infinite set of smooth compact Einstein metrics on S2 

SD�2 when

P
iki is even, and an infinite set of smooth

compact Einstein metrics on the nontrivial SD�2 bundle
over S2 when

P
iki is odd.

We thank Tekin Dereli, Sean Hartnoll, and Yukinori
Yasui for helpful discussions. G.W. G. and D. N. P. are
grateful to the George P. & Cynthia W. Mitchell
Institute for Fundamental Physics for hospitality during
the course of this work.
*Research supported in part by DOE Grant No. DE-
FG03-95ER40917.

†Research supported in part by the Natural Science and
Engineering Research Council of Canada.

‡Permanent address for D. N. P.
[1] R. C. Myers and M. J. Perry, Ann. Phys. (Berlin) 172, 304

(1986).
[2] B. Carter, Commun. Math. Phys. 10, 280 (1968); Black

Hole Equilibrium States, in Black Holes (Les Houches
Lectures), edited B. S. DeWitt and C. DeWitt (Gordon
and Breach, New York, 1972).

[3] S.W. Hawking, C. J. Hunter, and M. M. Taylor-Robinson,
Phys. Rev. D 59, 064005 (1999).

[4] G. Tasinato, I. Zavala, C. P. Burgess, and F. Quevedo,
J. High Energy Phys. 04 (2004) 038.

[5] J. E. Wang, J. High Energy Phys. 04 (2004) 066.
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