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Quantum Cryptography Without Switching
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We propose a new coherent state quantum key distribution protocol that eliminates the need to
randomly switch between measurement bases. This protocol provides significantly higher secret key
rates with increased bandwidths than previous schemes that only make single quadrature measurements.
It also offers the further advantage of simplicity compared to all previous protocols which, to date, have

relied on switching.
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Quantum cryptography is the science of sending secret
messages via a quantum channel. It uses properties of
quantum mechanics [1,2] to establish a secure key, a
process known as quantum key distribution (QKD) [3].
This key can then be used to send encrypted information.
In a generic QKD protocol, a sender (Alice) prepares
quantum states which are sent to a receiver (Bob) through
a potentially noisy channel. Alice and Bob agree on a set
of noncommuting bases with which to measure the states.
Using various reconciliation [4] and privacy amplification
[5] procedures, the results of measurements in these bases
are used to construct a secret key, known only to Alice
and Bob. Switching randomly between a pair of non-
commuting measurement bases ensures security: in a
direct attack, an eavesdropper (Eve) will only choose
the correct basis half the time; alternatively, if Eve uses
quantum memory and performs her measurements after
Bob declares his basis, she is unable to manipulate what
Bob measures. It is commonly assumed that randomly
switching between measurement bases is crucial to the
success of QKD protocols. In this Letter, we show that
this is not the case, and in fact greater secret key rates can
be achieved by simultaneously measuring both bases.

The original QKD schemes in the discrete variable
regime were based on the transmission and measurement
of random polarizations of single photon states [2]. Other
discrete variable QKD protocols have been proposed [6]
and experimentally demonstrated [7] using Bell states.
However, the bandwidth of such schemes is experimen-
tally limited by single photon generation and detection
techniques. Consequently, in the last few years there has
been considerable interest in the field of continuous vari-
able quantum cryptography [8], which provides an al-
ternative to the discrete approach and promises higher
key rates. Continuous variable QKD protocols have been
proposed for squeezed and Einstein-Podolsky-Rosen en-
tangled states [9]. However, these protocols require sig-
nificant quantum resources and are susceptible to
decoherence due to losses. QKD protocols using coherent
states were proposed to overcome these limitations.
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Originally, such schemes were only secure for line losses
less than 50% or 3 dB [10]. This apparent limitation was
overcome using the secret key distillation techniques of
post-selection [11] and reverse reconciliation [12].

In general, security in discrete variable cryptography
protocols is ensured via random switching between mea-
surement bases [2] or random switching of state manipu-
lation [13]. The random switching between measurement
bases can be achieved simply via a 50/50 beam splitter,
where the selection of the measurement basis is chosen
through the random photon transmission and reflection
statistics. To date, all continuous variable cryptography
protocols have also relied on randomly switching between
noncommuting bases. In the continuous variable regime,
switching requires precise control of the phase of a local
oscillator beam, which is difficult to achieve in practice.
This local oscillator switching currently places a serious
technical limitation on the bandwidth of cryptography
protocols. In this Letter, we introduce a new coherent
state protocol that does not require switching. In this
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FIG. 1. (a) Schematic of the simultaneous quadrature mea-
surement protocol. S*: random Gaussian numbers, AM: am-
plitude modulator, PM: phase modulator, X3 : quadratures of
Alice’s prepared state, 1: channel transmission, N*: channel
noise, X5: observables that Bob measures and Ng: Bob’s
vacuum noise. (b) Schematic of a possible feed forward attack
for Eve. X7 : observables that Eve measures, Nz, and Nz,: Eve’s
vacuum noises, gz : Eve’s electronic gains and IV *: additional
Gaussian noise.
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protocol, both bases are measured simultaneously, utiliz-
ing the quantum channel more effectively and achieving
both higher secret key rates and bandwidths compared to
previous continuous variable QKD protocols.

The quantum states we consider in this Letter can be
described using the field annihilation operator a =
(X* + iX7)/2, which is expressed in terms of the ampli-
tude X* and phase X~ quadrature operators. In this
Letter, we denote operators and real numbers with and
without ("), respectively, to avoid confusion. Without a
loss of generality, the quadrature operators can be ex-
pressed in terms of a steady state and fluctuating compo-
nent as X* =(X*)+8X", which have variances of
V* =((6X*)?). Figure 1(a) shows a schematic of our
protocol, which we term the simultaneous quadrature
measurement protocol. Our scheme is similar to the con-
tinuous variable coherent state quantum cryptography
protocols presented in [10]. The protocol goes as follows:
Alice draws two random real numbers, ST and S~, from
Gaussian distributions with zero mean and a variance of
V;-’. She then prepares a state by displacing the amplitude
and phase quadratures of a vacuum state by S* and S—,
respectively. The quadrature operators of Alice’s state are
therefore given by X = S* + X, where X are the
quadrature operators of the initial vacuum state. The
resulting state has normalized quadrature variances of
Vi = Vg + 1. Alice transmits this state to Bob through
a quantum channel with channel transmission efficiency
7, which couples in channel noise N*, where the varian-
ces of the channel noise must obey the uncertainty rela-
tion VyVy = 1. Bob simultaneously measures the
amplitude and phase quadratures of the state using a
50/50 beam splitter. The quadrature variances of the state
measured by Bob are given by

1 + +
s = 5mVa + (- n)Vy +1] (D

By using secret key distillations protocols [4] and stan-
dard privacy amplification techniques [5], Alice and Bob
can then distill a common secret key. It is possible to
analyze our protocol using either the post-selection, or
reverse reconciliation, secret key distillation techniques
[11,12]. However, for simplicity, we limit our analysis to
the Grosshans and Grangier reverse reconciliation proto-
col [12]. In this protocol, Alice and Eve both try to infer
Bob’s measurement results. Alice’s inference can be char-
acterized by a conditional variance which is used to
calculate the secret key rate. Alice’s conditional variance

given Bob’s measurement can be written as Ail B
ming/f(()?ﬁ — g1 X1)?), where the gain g is optimized
to give a minimum conditional variance of

VAIB = VB |<X§X§>|2/V§ (2)
To calculate a relation between Alice’s and Eve’s condi—
tional variances of Bob’s measurement, V 5 and V A W

define the states that denote Alice’s and Eve s inference of
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Bob’s measurement, expressed as: X, = Xz — aXj and
A/le = X; — BX, where BX; and aX; are Alice and
Eve’s optimal estimates with the optimal gains, a and 8
being real numbers. Finding the commutator of these two
equations, and using the fact that different Hilbert spaces
commute, we find that [XElB, Ang] =[X5, Xz1=2i[12].
This leads to the joint Helsenberg uncertainty relation

VEIB ap = 1 3)

Therefore, there is a limit to what Alice and Eve can
know simultaneously about what Bob has measured. From
this inequality, it is possible to determine the maximum
information Eve can obtain about the state in terms of
Alice’s conditional variances VAi| B

To minimize Alice’s conditional variance for one of
Bob’s measurements, Alice can prepare and send
squeezed states instead of coherent states. In this case,
the quadrature Variance of the states prepared by Alice
are given by Vi = Vg + Vg,, where Vg, denote the
quadrature variances of the squeezed state, and clearly
Viz = 1/V;. Using Egs. (1) and (2), we determine
Alice’s conditional variance to be

VA|B [nVsqz + (1 7’])V;Vr + 1] (4)

To find a lower bound on Eve’s conditional variances, we
first consider her inference of Bob’s state prior to the
50/50 beam splitter in his station. This is given by

Viip = ming ((XB, g X7)?), where / labels Bob’s state

prior to the beam splitter, and gz~ is chosen to minimize

VI?I - Eve’s measurement variance after the beam splitter
conditioned on Bob’s measurement, V., can be ex-

EIB’
pressed in terms of the conditional variance before the
beam splitter, V. > 4

Vt

Fip = ming: (X3

— g Xp)) = ( R VRN E)
where we have used the fact that Eve has no access to the
beam splitter in Bob’s station, and therefore has no
knowledge of the vacuum entering through it. The mini-
mum conditional variance achievable by Alice, prior to
the beam splitter in Bob’s station, is V Al (min) =n/Vy +
(1 = m)Vy [12]. Using this fact, and the conditional
variance inequality in Eq. (3), we can establish a lower
bound on Eve’s inferences of Bob’s measurements

+ L7 L1
VEIB(min) = 5{[‘/_2— + (1 - ﬂ)VN} + 1} (6)

The optimal information rate at which a Gaussian
signal can be transmitted though a channel with additive
Gaussian noise is given by the Shannon formula [14],
which can be expressed as I = (1/2)log,(1 + S/N) with
units of (bits/symbol), where S/N is the standard signal to
noise ratio. This optimal net information rate can be used
to determine the secret key rate for our simultaneous
quadrature measurement protocol, which is given by
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AI = AI" + AI”, where AI* = Iy, — Ig; with I,
being the quadrature information rates between Bob and
Alice (Eve): Iz, = (1/2)10g2(V§/V§|B) and Iz =
(1/2)logx(V5 / Vi,
cret key rate for the simultaneous quadrature measure-
ment protocol can be expressed as

) [12]. From these expressions, the se-

1 | V4 Vo
Al = —b&(M), ()
2 VAIBVAIB

where the generation of a secret key is only possible when
AT is greater than zero. Substituting Eq. (4) with Vg, = 1
(Alice maximizes her information rate by using coherent
states), and Eq. (6) into Eq. (7), gives a lower bound on
the secret key rate of

®)

[L+(1—=n)Vy] t+1
Al = 10g2< z iak )

where we have assumed symmetry between the amplitude
and phase quadratures. Figure 2 shows the secret key rate
for the simultaneous quadrature measurement scheme as a
function of channel efficiency and channel noise. We see
that, so long as the channel noise Vy is not excessive, a
secret key can be successfully generated between Alice
and Bob, even in the limit of very small channel effi-
ciency 7. As the channel noise is reduced, or efficiency
increased, the rate at which a key can be established is
enhanced. Figure 3 compares the information rates of the
simultaneous and single quadrature protocols as a func-
tion of channel efficiency for varying channel noise. The
information rate for simultaneous quadrature measure-
ments is always higher than that for single quadrature
measurements, and in the limit of large signal variances
and high channel efficiency, it approaches double. The
individual secret key rates for the simultaneous and single
quadrature measurement protocols can be calculated and
are plotted in Fig. 4. It should be noted that in our
protocol, Eve must attempt to determine Bob’s measure-
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ments in both the amplitude and phase quadratures. This
introduces an extra penalty to Eve which is not included
in the lower bound for her conditional variance in Eq. (6).
Therefore, in general, Eve will do even worse than our
analysis suggests.

To establish an upper bound on the secret key rate, we
now consider the physical implementation of an eaves-
dropping attack for Eve for our protocol. In the case
where Bob measures a single quadrature, Grosshans and
Grangier showed that an entangling cloner attack [12] is
the optimum attack. However, for simultaneous quadra-
ture measurements, we found a more effective attack to be
a simple feed forward attack with no entanglement as
shown in Fig. 1(b). The attack goes as follows: Eve taps
off a fraction of the beam using a beam splitter with
transmission €. She performs simultaneous quadrature
measurements on this beam, with measured quadrature
variances of

Vi = %[(1 Vit et] ©)

She then applies the measured photocurrents back onto
the quantum channel using electronic feed forward tech-
niques. The variances of Bob’s measurements can then be
expressed as

+ 1 + + +
Vi =5[(Je+ gVl = @/2PVi + 1+ Vi,

+85 /2 + (V1 — € + g5/e/2)]

where gz is the gain of the electric feed forward, and to
avoid detection, Eve encodes additional Gaussian noise
with a variance ij onto the channel. The gain of Eve’s
feed forward must be chosen carefully to ensure that the
magnitude of the signal detected by Bob remains invari-
ant. The correct gain can be expressed as gz = ﬁ(f —

\J€)/+/1 — €. Substituting this into Eq. (10) we obtain

(10)

o
&

(b) (©)

_ 1
S 7 /34
0 02 04 06 0.8 1
Channel efficiency n

FIG. 2. Contour plot of the information rate for the simulta-
neous quadrature measurement protocol as a function of chan-
nel efficiency n and channel noise V) in units of (bits/symbol)
for V, = 100.
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FIG. 3. Net information rates for the simultaneous and single
quadrature measurement schemes as a function of channel
efficiency. (i) Dashed line, simultaneous quadrature measure-
ment. (ii) Dotted-dashed line, single quadrature measurement.
(iii) Solid line, simultaneous quadrature measurement with
feed forward attack. For a variance of V, = 100 with varying
channel noise: (a) Vy =1, (b) Vy = 1.2, and (c) Vy = 2.
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FIG. 4. Information rates for the simultaneous and single
quadrature measurement schemes as a function of channel
efficiency 7, with Vi = 100 and V§ = 1. The net information
rate for both schemes is Al = Iz, — Igg. In the case of simul-
taneous quadrature measurements, /g, the dashed line, denotes
maximum information rate obtained by Eve, while I'E’;J;, the
dotted-dashed line, denotes the information rate obtained by
Eve using the feed forward attack.

Bob’s variance due to the feed forward attack, V{;fi. We

ff=
VEIB ’

the feed forward attack as a function of the beam splitter
transmission €. Ideally, Eve would take € — 0O to gain as
much information about Alice’s signal as possible.
However, in doing so she increases the noise on Alice’s
inference of Bob’s state and consequently alerts them to
her presence. She must ensure that her attack does not
change the magnitude of this noise. This places both
lower €.;, and upper €,,, limits on the beam splitter
transmission. We numerically minimize Vélth for all €
between €.;, and €,,,, and hence determine the secret
key rate AI//. The secret key rate for the feed forward
attack is plotted in Figs. 3 and 4 and compared with the
lower bound calculated in Eq. (8). Figure 3 shows that for
channel noise of variance Vy = 1, the feed forward in-
formation rate is higher than our lower bound. However,
as the channel noise variance is slightly increased, the
feed forward bound asymptotes to the lower bound calcu-
lated in Eq. (8).

To summarize, we have proposed a new coherent state
QKD protocol based on simultaneous quadrature mea-
surements. We have calculated a lower bound on the secret
key rate for this protocol, finding that in the limit of large
signal variance and high channel efficiency, it approaches
twice that of previous coherent state QKD schemes. We
have considered a possible eavesdropping attack in the
form of a simple feed forward scheme, which has pro-
vided us with an upper bound on the secret key rate. An
important advantage of our simultaneous quadrature
measurement protocol is the increase in total bandwidth.
The absolute information rate, in bits/second, can be
expressed as I = Wlog,(1 + S/N) [14], where W is the

can now calculate Eve’s conditional variance, for
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limiting bandwidth associated with the state preparation
or detection. Typically, in continuous variable quantum
cryptography schemes, W can be attributed to the switch-
ing time for the local oscillator phase. The simultaneous
quadrature measurement scheme does not require switch-
ing, so that orders of magnitude increases in absolute
secret key rates should be achievable.

In conclusion, we have shown that there is no need to
randomly switch bases to achieve secure QKD. By per-
forming simultaneous quadrature measurements in a co-
herent state quantum cryptography protocol, we are able
to achieve a significantly larger secret key rate than that
obtained by the usual single quadrature measurements.
This new QKD protocol will allow simpler and higher
bandwidth quantum cryptographic experiments and tech-
nological applications.
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