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We solve the three-body problem of a quasi-one-dimensional ultracold Fermi gas with parabolic
confinement length a? and 3D scattering length a. On the two-body level, there is a Feshbach-type
resonance at a?=a � 1:46, and a dimer state for arbitrary a?=a. The three-body problem is shown to be
universal, and described by the atom-dimer scattering length aad and a range parameter bad. In the
dimer limit a?=a� 1, we find a repulsive zero-range atom-dimer interaction. For a?=a� �1,
however, the potential has long range, with aad > 0 and bad � aad. There is no trimer state, and
despite aad � 0 at a?=a � 2:6, there is no resonance enhancement of the interaction.

DOI: 10.1103/PhysRevLett.93.170403 PACS numbers: 03.75.Ss, 03.65.Nk, 05.30.Fk
The recent experimental observation of the formation
of dimers (molecules) in ultracold binary Fermi gases [1]
has sparked intense excitement and activity among both
atomic and condensed-matter physicists. Experiments are
now able to probe in detail the BEC-BCS crossover re-
gime by using magnetic-field tuned Feshbach resonances
[2–4], where the 3D scattering length a describing the
s-wave interaction strength among different fermion spe-
cies can be tuned almost at will. This crossover remains a
difficult and long-standing challenge to theory, as there is
no small parameter in the problem [5]. Here we discuss
the related but simpler problem of an ultracold two-
species ( "; # ) Fermi gas confined in a 1D trap potential.
On the two-body level, there is always a bound state
(dimer), and one has a confinement-induced resonance
(CIR) in the 1D atom-atom scattering length aaa [6,7],
similar to a Feshbach resonance. Such a scenario appears
to be experimentally feasible [1–4,8,9] and could reveal
interesting new physics. In this Letter, we analytically
solve the three-body problem for confined ultracold fer-
mions, and compute the atom-dimer scattering length aad
and the potential range bad [see Eq. (13) below]. Our
results also determine parameters entering models that
may be solved exactly by powerful many-body tech-
niques in 1D [10]; see also Refs. [11,12].

For simplicity, we assume the two fermion species to
have the same mass m0. Under the harmonic transverse
confinement potential Uc	r
 � 1

2m0!
2
?	x

2 � y2
, with as-
sociated length scale a? � 	2 �h=m0!?


1=2, there is a two-
body bound state (dimer) with dimensionless binding
energy

�B � 	 �h!? � EB
=2 �h!? (1)

determined by the condition [6,7]

�	1=2;�B
 � a?=a � 0: (2)

Since the zeta function �	1=2;�
 is monotonic in �,
there is exactly one bound state for any given a?=a,
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although the 3D problem has a bound state only for
a > 0. For a?=a! �1, the ‘‘BCS limit’’ is reached,
where �B ’ 	a=a?


2 � 1, and the dimer size is large,
of the order a2?=jaj. In the tightly bound ‘‘dimer limit’’,
a?=a! �1, the dimer size is small, of the order a, and
�B ’ 	a?=2a
2 � 1. The analogue of the Feshbach reso-
nance is then realized by the CIR. Solving the two-body
scattering problem with just one open channel, the 1D
scattering length is [6,7]

aaa � �
a?
2

�
a?
a

� C

�
; C � ��	1=2
 ’ 1:4603: (3)

At low energies, this implies that one can use the 1D
atom-atom interaction potential Vaa	z; z0
 � gaa�	z�
z0
 with gaa � �2 �h2=m0aaa. The CIR then occurs for
aaa � 0, corresponding to �B � 1, and can be reached
by tuning a? or a.

A natural question then concerns the scattering prop-
erties of the atom-dimer system, for instance, the scat-
tering length aad. This problem has recently been solved
for the unconfined 3D case by Petrov [13], where aad �
1:2a. In the confined geometry, it is then interesting to ask
(i) whether the scattering length aad also shows CIR-
related resonant behavior, (ii) whether a trimer state could
be possible in the confined geometry, and (iii) whether a
universal description in terms of simple two-body physics
is always applicable. For the unconfined case, Efimov [14]
showed that this three-body problem is universal.
Moreover, there is no bound trimer state. Below we shall
answer these questions in detail.

We study the three-body problem 	""#
 with two iden-
tical fermions, and denote by x1 	x2;3
 the position of the #
(the two " ) particles. Next we perform an orthogonal
transformation to variables 	x; y; z
 in order to decouple
the center-of-mass coordinate z [13]. Since the confine-
ment is harmonic, Uc remains diagonal in the positions.
The three-body problem then reduces to
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�
�

�h2

m0
r2

X�Uc	X
�E
�
		X
��

X
�

V	r�
		X
; (4)

where X � 	x; y
 is a six-dimensional vector, x � 	2x1 �
x2 � x3
=2 and y � x3 � x2. With these definitions, the
distances between the # particle and each " particle are
r� �

���
3

p
x=2� y=2. We adopt the pseudopotential ap-

proximation for the 3D interaction, V	r
 � 	4� �h2a=
m0
�	r
 @@r 	r�
, which allows us to incorporate inter-
actions via boundary conditions imposed for vanishing
distances between " and # atoms. For r� ! 0, this implies
the singular behavior

		X
 ’ �
f	r?;�

4�r�

	1� r�=a
; (5)

where the r?;� � x=2�
���
3

p
y=2 are orthogonal to r�. We

consider E< 0 and write

E � �2�B �h!? � �h2 �k2=m0;

where the relative momentum �h �k of the atom-dimer com-
plex is sent to zero later.

The boundary conditions (5) allow us to write Eq. (4)
in the form

m0		X
 �
X
�

�
Z
dx0dy0G	2


E 	x; y;x0; y0
f	r0?;�
�	r
0
�
;

(6)

where the two-particle Green function is

G	2

E 	r1; r2; r3; r4
 �

X
�1;�2

 �1	r1
 �2	r2
 
�
�1
	r3
 �

�2
	r4


E�1 � E�2 � E
:

Here  � denotes the eigenfunctions to the single-particle
problem for eigenenergy E�. The quantum numbers �
include the 1D momentum k, the (integer) angular mo-
mentum m, and the radial quantum number n �
0; 1; 2 . . . , which gives E� � �h!?	2n� jmj � 1
 �
�h2k2=m0 and  � � eim#Rnm	%
e

ikz with radial functions
Rnm [6]. Using the fact that G	2


E and the integration
measure are both invariant under orthogonal transforma-
tions, we find from Eq. (6)

m0		r; r?
 �
Z
dr0?f	r

0
?
�G

	2

E 	r; r?; 0; r0?
 �G	2


E 	r=2

�
���
3

p
r?=2;

���
3

p
r=2� r?=2; 0; r0?
�;

where r � r� and r? � r?;�. Next we implement the
r ! 0 limit according to Eq. (5) to obtain a closed equa-
tion for f	r?
. This limit can be directly taken for the
nonsingular second term in the integral above, while the
first term contains the singular behavior necessary from
Eq. (5). Once this singular behavior is removed, one
obtains a regular integral equation for f	r?
 [13,15,16].
It is convenient to transform from real space into the
complete basis f �g, implying
170403-2
L 	��
f� �
X
�0
A�;�0f�0 ; (7)

where we use [see also Eq. (2)],

L	�
 � �	1=2;�
 � �	1=2;�B
;

�� � �B � 	a? �k=2
2 � E�=2 �h!?;

and the matrix A�;�0 is given by

4�a?
m0

Z
dr? �

�	r?
 �0 	�r?=2
GE�E�	
���
3

p
r?=2; 0
:

Using the integral representation of Ref. [11] for the two-
body Green function GE	r; r0
, A�;�0 can be evaluated
explicitly. Before analyzing Eq. (7) further, however, it
is useful to perform a rescaling. So far, f has been taken
as a function of r? � 	%; z
. However, for the asymptotic
solution consisting of a dimer and a free atom, the atom-
dimer distance d does not coincide with r?. With the
dimer wave function �0	r
 [6], we expect

		r; r?
 ’ �0	r
'	d
;

d � 	x1 � x3
=2� x2 � r� � r�:

In the r! 0 limit, 	 ’ '	
���
3

p
r?=2
=4�r, which estab-

lishes a connection between d and r? from Eq. (5). After
the rescaling r? !

���
3

p
r?=2, f coincides with the scatter-

ing solution '. Therefore, from now on, all wave vectors
are rescaled by the factor 2=

���
3

p
.

Let us then proceed by projecting the integral Eq. (7) to
the lowest transverse state (n � m � 0). Explicit calcu-
lations [17] show that the higher states are negligible in
the BCS limit and affect aad only slightly in the dimer
limit, see below. Taking into account the above rescaling,
noting that only m � 0 modes have nonzero overlap with
the lowest state we find

L	�k
fk �
Z �1

�1

dk0

2�
Ak;k0fk0 ;

�k � �B �
3a2?	k

2 � �k2


16

(8)

with the kernel given by

Ak;k0 �
X1
p�0

4�p

p��B � 	a?=2
2��3 �k2=4� k2 � k02 � kk0�
:

(9)

Following Ref. [15], we now make an ansatz for the
solution of the integral equation,

f	k
 � 2��	k� �k
 � i~f	k; �k

X
�

1
�k� k� i0�

; (10)

with a regular function ~f	k; �k
. This ansatz gives the
expected scattering state after Fourier transforming to
real space,

f	z
 � ei �kz � ~f�sgn	z
 �k; �k�ei �kjzj:
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In the low-energy limit k; �k! 0, on general grounds [18],
the expansion

~f	k; �k
 � �1� ikbad � i �kaad �O	k2; �k2; k �k
 (11)

applies, where aad is the atom-dimer scattering length.
170403-3
From the analysis of model potentials, the length bad is
linked to the range of the effective 1D atom-dimer po-
tential. In particular, bad ! 0 if a zero-range � potential
can be used for the effective 1D atom-dimer scattering at
low-energy scales.

Inserting the ansatz (10) into Eq. (8), we obtain
L	�k

�k2 � k2

2i �k ~f	k; �k
 � iP
X
�

Z �1

�1

dk0

2�
Ak;k0
�k� k0

~f	k0; �k
 �
1

2

�
~f	 �k; �k
Ak; �k � ~f	� �k; �k
Ak;� �k

�
� Ak; �k; (12)

where P denotes a principal value integration. Finally, the analysis can be simplified considerably by letting �k! 0, i.e.,
by expanding Eq. (12) in �k and keeping only the lowest order. At that stage, we switch to dimensionless momenta u; u0

by writing k � 	2
�������
�B

p
=a?
u. Some algebra gives, with the weakly �B-dependent functions

G	u; u0
 �
X1
p�0

4�p

1� u2 � u02 � uu0 � p=�B
; H	u
 �

X1
p�0

4�pu

2	1� u2 � p=�B

�2 ;

the following integral equation for h	u
 � ~f	u; 0
:

Z �1

�1

du0

2�u02
�G	u; u0
h	u0
 �G	u; 0
h	0
� �

�������
�B

p
2u2

L

�
�B�1�

3u2

4
�

�
h	u
 �

aad
�������
�B

p
a?

G	u; 0
 � iH	u
: (13)
FIG. 1. Scattering length aad=a? versus dimensionless bind-
ing energy �B. The solid curve is the numerical solution to
Eq. (13), and the dotted (dashed) curves represent the analyti-
cal results in the dimer (BCS) limit, respectively; see Eqs. (14)
and (15).
Note that the real (imaginary) part of h	u
 is even (odd)
in u. The scattering length aad finally follows from the
real part of Eq. (13) and the condition h	0
 � �1 [see
Eq. (11)], while bad can be extracted from the imaginary
part of Eq. (13). The integral Eq. (13) shows, in particu-
lar, that aad=a? depends only on �B, and hence only on
the binding energy of the dimer.

In the dimer limit, a?=a� 1 and �B � 1 [see
Eq. (2)], power counting shows that the first term in
Eq. (13) is negligible. Using �	1=2;� � 1
 � �2

�����
�

p

and G	0; 0
 � 4=3 yields from h	0
 � �1 the result

aad � �+1

�������
�B

p
a? � ,a?=

�������
�B

p
� �+1a

2
?=2a� 2,a;

(14)

where +1 � 9=32 � 0:28 125. We also specify the sub-
leading order in Eq. (14), where , � 0:543. A similar
calculation gives bad=a? � 	8=9
��3=2

B for �B � 1,
validating a repulsive zero-range 1D atom-dimer poten-
tial in the low-energy limit, Vad	z
 � gad�	z
 with gad >
0. Because of the presence of higher channels, aad is
renormalized in the dimer limit. This correction can be
derived analytically [17] by making explicit contact to
the integral equation in the unconfined case [13,15]. We
find +1 � 0:636, which gives aad � �	ar?


2=2	1:2a
 with
the confinement scale ar? � 	3 �h=2m0!?


1=2 for the atom-
dimer reduced mass 2m0=3. With the 3D atom-dimer
scattering length 1:2a [13], this result exactly matches
the dimer limit of the analogous two-body result (3).
Since closed channels do not cause profound changes
even in the dimer limit, they are neglected in what
follows.

Outside the dimer limit, in general a numerical solu-
tion of Eq. (13) is necessary. To ensure regularity of h	u
,
it is beneficial to Fourier transform back to real space,
where the Fourier transformed h	z
 is well behaved and
allows for a quickly converging solution of the integral
equation. The numerical result for aad=a? as a function of
�B is shown in Fig. 1. In the BCS limit, where a?=a�
�1 and �B � 1, we find

aad � +0a?=
�������
�B

p
� +0a2?=jaj; +0 � 0:75: (15)

The solution in Fig. 1 for arbitrary �B nicely matches
onto the limits (14) and (15) . Remarkably, around �B �
2:2, there is a zero of aad. At first sight, this behavior
seems to be linked to the two-body CIR; see Eq. (3).
However, the atom-dimer ‘‘resonance’’ occurs at a differ-
ent �B, and, more importantly, the assumption of a
�-potential interaction breaks down. This can be seen by
computing the range parameter bad in Eq. (11) [see Fig. 2].
While in the dimer limit, bad stays small, in accordance
with our analytical result, in the BCS limit, it is found to
170403-3
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FIG. 2. Range parameter bad=a? versus �B. The solid curve
gives bad from the numerical solution of Eq. (13), and the
dashed line represents aad from Fig. 1 for comparison.
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diverge as bad / ��3=2
B . This implies that one cannot use

a � potential to describe atom-dimer scattering outside
the dimer limit, but instead more complicated potentials
have to be used, e.g., a repulsive square-well potential.
Furthermore, the potential becomes nonlocal [19]. An
effective 1D potential for low-energy atom-dimer scatter-
ing can be constructed directly from Eq. (8). In fact,
transforming Eq. (8) back to real space, one gets a
Schrödinger equation�

�
d2

dz2
� �k2

�
f	z
 � �

Z
dz0Vad	z; z0
f	z0
 (16)

with the nonlocal effective potential

Vad	z; z
0
 � �

Z dk
2�

dk0

2�
eikz�ik

0z0 k
2 � �k2

L	�k

Ak;k0 ; (17)

where Ak;k0 is given by Eq. (9). It can be easily checked
that this potential becomes very wide in the BCS limit,
with support given by the dimer size, but it always stays
repulsive. Hence there is no three-body bound state
(trimer) even in the confined problem for arbitrary a?=a.

Finally, we have also analyzed the problem of three-
body recombination and dissociation, " � " � #$"# � " ,
see Ref. [13] for the unconfined case, where a nonzero
incoming state 	0 has to be taken into account in Eq. (6).
Antisymmetry of 	0	x; y
 under y ! �y requires that
the lowest transverse state (for y) has angular momentum
m � �1, implying that dissociation processes encounter
an energy barrier �h!?	1��B
 not present in the uncon-
fined problem. The three-body recombination problem is
therefore simpler, and dimers are rather stable against
three-body dissociation.

To conclude, we have solved the three-body problem of
a binary cold Fermi gas. The scattering length aad de-
scribing atom-dimer scattering has been extracted for
arbitrary confinement and 3D scattering length, and is a
universal function of a?=a. For �B � 2:2, corresponding
to a?=a � 2:6, we find aad � 0. However, this does not
imply resonantly enhanced atom-dimer interactions.
While in the dimer limit, a?=a� 1, a standard repulsive
170403-4
zero-range potential is found, in the BCS limit, a?=a�
�1, the situation turns out to be more complicated. The
scattering length is positive, aad > 0, but at the same time
the range of the effective interaction becomes very large,
bad � aad. Therefore it is not possible to employ zero-
range potentials in that limit anymore. Nevertheless, it is
worth pointing out that also the confined three-body
problem is universal in the sense that it can be completely
expressed in terms of two-body quantities. This is encour-
aging news for many-body calculations which rely on
model parameters extracted only from two-body physics
[11,12]. Finally, we mention that the scattering length aad
(and possibly the length bad) can be extracted experimen-
tally using standard techniques, and thus the scenario put
forward above could be checked in detail. Future work
should also address the role of Pauli blocking due to the
background Fermi sea. For the unconfined case, this was
studied by Combescot [20].
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