VOLUME 93, NUMBER 17

PHYSICAL REVIEW

week ending

LETTERS 22 OCTOBER 2004

Unified Derivation of Tunneling Times from Decoherence Functionals
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The four tunneling times, the Larmor time, the Biittiker-Landauer time, the Bohm-Wigner time, and
the Pollak-Miller time, originally obtained from very different physical models, are derived in a
unified manner from the Gell-Mann—Hartle decoherence functionals. The origin of the two types of
derivatives in the expressions for these tunneling times is clarified at the level of Feynman paths.
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Tunneling is one of the most important quantum phe-
nomena with a wide range of applications. The scanning
tunneling microscope is a powerful tool in surface sci-
ence, and various types of semiconductor devices have
been developed that utilize tunneling effects. In spite of
this remarkable success, there still remains a fundamental
question about tunneling. That is, we still do not have a
good understanding about tunneling time [1-5]. This
should be compared to the case of tunneling probability.
The concept of tunneling probability is clear; it is simply
the ratio of the number of particles that are finally trans-
mitted to the number of incident particles. By contrast,
discussions are continuing at the conceptual level for
tunneling time. This was, however, not a serious problem
for decades, because (i) the stationary treatment of tun-
neling worked very well and (ii) the estimated tunneling
times (e.g., 10715-107'* sec [6]) were too short to relate
them to experiment. Today, however, the importance of
tunneling dynamics has been recognized in many fields
and the progress of time-resolved spectroscopy has made
it possible to observe the phenomena in solids whose time
scales are comparable to the tunneling times.

In the literature, we find various tunneling times that
are based on different ideas of characterizing the time
spent by a particle under the barrier.““Which is the correct
tunneling time?”” used to be the central question in the
tunneling time problem. Today, however, a certain con-
sensus seems to exist that the various tunneling times
should be understood in a broad sense that they character-
ize different or complementary aspects of tunneling pro-
cess, rather than in the narrow sense as the time taken by
the particle to tunnel through the barrier region. Among
various tunneling times, of special importance seems to
be the following four tunneling times [7-9] that are
expressed in terms of the derivatives of the transmission
amplitude T = |T|e": the Larmor time 7 = —/d6/dV
[10], the Biittiker-Landauer time 75 = —£/dIn|T|/dV
[11], the Bohm-Wigner time (phase time) 7gw = /960/
dE [12], and the Pollak-Miller time 7py; = /10 In|T|/0E
[13], where V is the height of the potential and E the en-
ergy of the incident particles. These times have been ex-
tensively studied not only theoretically but also experi-
mentally [14,15]. The physical models behind the four
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tunneling times are very different: 7,; was obtained by
considering the spin precession by a small magnetic field
confined in the barrier region, 7g; by considering the ef-
fect of an oscillating barrier on the tunneling particles,
7gw by following the peak motion of a broad wave
packet, and 7py; by generalizing the classical collision
time with the quantum mechanical flux-flux correlation
function. It is not surprising that the four tunneling times
can be expressed in terms of the transmission amplitude,
since it describes the tunneling characteristics, but their
similarity (they are V or E derivative of 6 or |T) is some-
what a surprise because the models are quite different.

In this Letter, we derive the four tunneling times in a
unified manner without relying on specific models by
using the Gell-Mann-Hartle decoherence functionals
[16] for real time Feynman histories [17]. This derivation
reveals that the two types of derivatives (3/9V and 9/9E)
can be understood as resulting from two different defini-
tions of the “time that a Feynman path takes to traverse
the barrier region.” We first review the decoherence func-
tional for tunneling time. We then introduce two types of
tunneling times, the resident (or dwell) time for trans-
mission and the passage time, and calculate the decoher-
ence functionals for both types of tunneling times. We de-
rive 7 and gy, from the decoherence functional for the
resident time, and 7gw and 7py; (with an additional time
7o) from the decoherence functional for the passage time.

Consider the tunneling of a particle represented by a
wave packet W(x, r). The particle is incident from the left
on the rectangular barrier of height V) that extends from
x =0tox =d. At t = 0, the packet is on the left side of
the barrier. The tunneling probability P, the probability
to find the particle on the right side of the barrier at
sufficiently late times, is given by

P = lim f” dx|W(x, D). (1)
—o0 |4

We use W(x, 1) = fdeK(x, t; x0, 0)W(xy, 0), where K is
the propagator. It is sufficient to consider K(x, 7;xo, 0)
only for xo <0 and x > d because the initial packet is
localized in x < 0 and the integration range in Eq. (1) is
x >d. Feynman’s path integral [17] tells us that
K(x, t;x9, 0) can be given as the sum of ¢’/7 (S being
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the action) over all the paths {x(#)} that connect (x,, 0) and
(x, 7). Let 7[x(-)] be the “time taken by a Feynman path
x(f) to traverse the barrier region.” Classifying all the
paths according to the values of 7[x(+)], we have

K(x, t; x0,0) = f "drK (x, t; xo, 0] 7), 2
0

where K(x, t;xy, 0|7) is the sum of ¢//7 over those paths

that satisfy 7[x(+)] = 7. From Eq. (2), we have

W(x, t) = ft dr¥(x, t|7), 3)
0
where  W(x,t|7) = [dx,K(x, t; xp, 0l7)W(xo, 0). Using
Eq. (3), we can write the tunneling probability as
P= f " ar [ " drD(7, 7), @)
0 0

D(7, 1) = tlim foo dxV(x, t|7)V*(x, t|7), (5)
— 00 d

where D(7/, 7) is the Gell-Mann-Hartle decoherence
functional [16] for the case of tunneling time.
The general form of the decoherence functional is

D)= [ 8q' [ sa5(g; ~ap) x explilsla')]

—=S[q()D/E}p g, 90), (6)

where Re D(a’, @) is a measure of the interference be-
tween the coarse-grained classes of Feynman histories o’
and « both connecting (g, o) and (g, t7), the integrals
[o8q' and [, 8g represent the sums over paths with
appropriate constraints consistent with the coarse grain-
ings, and p is the initial density matrix. In our problem,
a' (or a) corresponds to the coarse-grained class of paths
that satisfy the constraint 7[x(-)] = 7/ (or 7), [, 84" and
[, 0q are the restricted path integrals subject to the
constraints, and p(x(, xo) = W(x{, 0)¥*(x,, 0). With these
specializations, Eq. (6) reduces to Eq. (5) [18].

If Re D(7/, 7) is proportional to 8(7' — 7), we have, by
writing the proportionality coefficient as P(7),

Re D(7/, 7) = P(7)6(7' — 7), @)

which is the weak decoherence condition [16] in the
consistent history approach [16,19]. The approach claims
that, if Eq. (7) holds, then a probability distribution can be
defined for tunneling time; the probability distribution of
tunneling times for transmitted particles is given by
P(7) = P(7)/P. To consider (the possibility of) a proba-
bility distribution of tunneling times has been a point of
view adopted by many authors. Landauer and Martin [3]
stated, “Whether traversal time is best viewed as such a
distribution, or as a single time scale indicator, is still an
open question in the opinion of the authors.” Now, let us
consider the following quantity:
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I[F]= % ﬁw dr’ ﬁw drF (7, 7)D(7, 7). (8)

If we assume Eq. (7) to hold, we can show, by using the
Hermiticity D(r, 7') = D*(7/, 7), that I[(7' + 7)/2] =
Ik dr7P(7). Therefore, I[(7' + 7)/2] is the average tun-
neling time if Eq. (7) holds. Because of the interference
between Feynman paths, however, Eq. (7) does not hold
[18,20]. We formally call I[(7' + 7)/2] the “quasiaver-
age” in the sense of a quantity with the dimension of
time that “fails to become” the true average due to the
interference. The quasiaverage is real-valued due to the
Hermiticity of D. Another real-valued quantity o2 =
I[7'7] — I’[(7' + 7)/2] is the variance of tunneling times
if Eq. (7) holds. Since it does not hold, we formally call o>
the “quasivariance.”

Before calculating D(7/, 7), note that 7[x(-)] can be
defined in several ways, since a Feynman path crosses
x = 0 and x = d many times in general. We consider two
definitions (see Fig. 1): (i) 7[x(-)] is defined as the sum of
the times 7,, during which the path is in the barrier region
[21], (ii) 7[x(-)] = 74 — 7;, where 7 is the last time the
path leaves the barrier region and 7; is the first time it
enters the region [22]. Although these definitions are at
the level of Feynman paths, it would be natural to expect
that there exist two families of tunneling times, the
resident (or dwell) time for transmission and the passage
time, which correspond to (i) and (ii), respectively. We
will see that 71 and 7 belong to the former family,
while 7w and 7py belong to the latter. Although tenta-
tive, the resident time might be the time for the barrier,
while the passage time might be the time for the particle,
as Fig. 1 suggests. Existing approaches might then be
understood as follows: the tunneling time for the barrier
is measured by the particle in the Larmor clock approach
[10,23], while it is measured by the barrier in the mod-
ulating barrier approach [11]; in the wave packet follow-
ing approach [12], the tunneling time for the particle is
measured by the particle. We attach subscript r to quan-
tities for resident time, and p to those for passage time.

To calculate D(7, 7), we need to know W(x, #|7). For
the case of resident time, we have, from [24],

. dv .
W, (x, t|7) = e Vor/h [ ——_ oVT/ip (x, 1), 9)
2h

where Wy (x, 1) is the transmitted packet when the poten-

FIG. 1. Left: The solid parts of the Feynman path contribute
to the resident (or dwell) time for transmission. Right: The
solid part of the path contributes to the passage time.
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tial height is V. Equation (9) leads us to [20]

D.(+, 1) = f K 2e~ =D ()T 3 (r), (10)

2arh

where (k) is the Fourier transform of W(x, 0), T(k, V)
is the transmission amplitude for the plane wave with
wave number k incident on the square potential of height
V,and [dV = [*®_dV and [dk = [®, dk throughout
the text. The V integrals arise from the constraint
7.[x(-)] = 7 imposed on the restricted path integral for
K. (x, t; x, 0| 7).

For the case of passage time, it was shown in [18] that

Ti(r) = f AV i, v), (11)

V(o iln) = Kd - L= di— ), (12)
im 0x

where K(d, 7) = K(d, 7;0,0) corresponds to the barrier
penetration and (%/im)dWy,../dx the propagations before
and after the barrier; Wy, is the wave function in the
absence of the barrier and (/i/im)d/dx results from the
path decomposition expansion [25] used to define T;
and 7¢. Using Eq. (12) and noting that Wy..(x, 1) =
[(dk/2m) (k)™ —E/R with E = h%k? /2m, we can cal-
culate the right-hand side of Eq. (5) to have

h

Dy(7',7) = <E>2K(d, )K" (d, 7)

X f dk|iy(k)|>k2e BT/ (13)
Note that K(d, 7) can be written as
dk .
K(d 1) = f—e_’ET/ﬁT(k, Vo), (14)
2T

which follows from the eigenfunction expansion of the
propagator for xy, =0 and x =d, ie., K(x,1;xp0) =
[(dk/2m)T(k, Vo)e'kae=d=x)=iEt/l (throughout the text,
the transmission amplitude is defined in such a way that
the stationary solution for x = d is given by Te*¥=d)),

In the monochromatic limit |(k)|> — 8(k — k), the
decoherence functional is factorized as

Di(7, 7) = A(TA (1), (15)
where, with Ey = /i%k3/2m,

. dv .
A1) = e Vol | —— eiVT/RT (K, V), (16)
2ah

fiky . dk .
Ay(1) = =L eFor/h f — e ET/T (K, V). (17)
m 27

We now derive 7y, gL, Tew» and 7py from D;(7/, 1)
by calculating Eq. (8) for some specific F’s. First, let us
put F = 7/. For the case of resident time (i =r), we
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substitute Eq. (15) with Eq. (16) into Eq. (8) and use

[ Y drA(r) =T, (18)

0

f” drrA(r) = in 210, (19)

0 avo

where T, = T(ky, V;)). To prove Eq. (18), use Eq. (16) and
replace [’ dr by [*, dr, which is allowable because
T(ko, V) has simple poles only in the upper half of the
complex V plane [26]. The V|, derivative of Eq. (18) gives
Eq. (19). Using Eqgs. (18) and (19) and noting that P =
|Ty|?> in the monochromatic limit, we have I[7']=
ihdInT,/dV,. For the case of passage time (i = p), we
substitute Eq. (15) with Eq. (17) into Eq. (8) and use

foo dtA, (1) =T, (20)
0

® _ Rl To
]0 drTA,(7) = i(an 2E0> (21)

to have [[7'] = —ihdInT,/IE, + ili/2E,, where
Eq. (20) can be proved by using the Mittag-Leffler ex-
pansion of T(k, Vy) [Eq. (24) of Ref. [27]], the details of
which will be given elsewhere. The obtained ;[ 7] can be
rewritten as follows:

L7l =1 —iteL,  Ll7]=7ew —i(mpm—70), (22)

where TIM — —haBO/BVO, TBL — _halanol/aVO, TBW —
haao/an, TpM = ho lanol/aE(), and To = ﬁ/ZEO (note
that Ty = |T,le'%). Next, we put F = (7/ = 7)/2. Noting
that I;[ 7] = I[7'], we immediately have

LI(7+7)/2]=7m LI(r—1)/2]=iTg, (23)

LU +7)/2]= 78w,  Ll(r—7)/2]=i(py — 7).

(24)

This is the main result. Recall that I[(7' + 7)/2] and
L[7'7] = I}[(7' + 7)/2] are, respectively, the quasiaver-
age and the quasivariance of tunneling times. In the
monochromatic limit, the quasivariance can be shown
to be equal to |L[(7 — 7)/2]1, so that |L[(7 — 7/)/2]| is
the “quasideviation.” We may thus interpret the result as
follows: 7y and |7 | are, respectively, the quasiaverage
and the quasideviation of resident times, and 7gw and
|7pm — 7ol are, respectively, the quasiaverage and the
quasideviation of passage times. To understand the physi-
cal meaning of these quasivalues, it would be necessary
to explore the relationship between D(7/, 7) and the time-
dependent wave functions, where the relationship be-
tween the decoherence functional approach and the quan-
tum shutter approach [27,28] might be helpful. In passing,
L[(7' — 7)?], which must vanish if Eq. (7) holds, does not
vanish in general.
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The complex tunneling time 7); — iTgy, NOW given as
I[7'], has been obtained from the path integral ap-
proaches [29,30], the systematic projector approach [31],
and the weak measurement approach [32]. Another com-
plex tunneling time 7y — i7py(= I,[7" — i7(]) has been
obtained from the energy sensitivity approach [8,33].
Note that L[7'7]= iy + 75 and IL[(7' — irp) X
(7 +ity)] = T%W + T}%M.

For a wave packet initial condition, we use Eq. (10) or
Eq. (13) instead of Eq. (15). The resultant /;[ ] is found to
be given by I;[F] for the monochromatic case averaged
over k with the weight |(k)|?|T(k, V,,)|>. For example,
v and 7 in Eq. (23) are replaced by (7;) and (7)),
respectively, where (- - ) stands for the k average.

To summarize, the Larmor time and the Biittiker-
Landauer time can be derived from the decoherence
functional for the resident time, while the Bohm-
Wigner time and the Pollak-Miller time (with an addi-
tional time 7(3) can be derived from the decoherence
functional for the passage time. This is also true for
over-the-barrier propagation, since we have not assumed
Ey <V,. The decoherence functional approach will pro-
vide a basis for understanding various tunneling times in
a unified manner without relying on specific models.
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