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We perform a renormalization-grouplike numerical analysis of geographically embedded complex
networks on a two-dimensional square lattice. At each step of the coarse-graining procedure, the four
vertices on each 2� 2 square box are merged to a single vertex, resulting in a coarse-grained system of
smaller size. Repetition of the process leads to the observation that the coarse-graining procedure does
not alter the qualitative characteristics of the original scale-free network, which opens the possibility of
subtracting a smaller network from the original network without destroying the important structural
properties. The implication of the result is also suggested in the context of the recent study of the human
brain functional network.
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The study of complex networks has been one of the
most active research areas not only in physics but also in
other various disciplines of natural and social sciences
[1–3]. In some existing networks, the computerized au-
tomatic data acquisition techniques make it possible to
grab the detailed information of interconnections in net-
works. In contrast, in many biological and social net-
works, the complete network structure is hard to define
and even when it is possible it requires tremendous time-
demanding efforts. The detailed structure of the neuronal
network of Caenorhabditis elegans [2], composed of
about 300 neuron cells and 14 synaptic couplings per
neuron, has been obtained by biologists through direct
observations. In comparison to the C. elegans neural net-
work, the complexity of the human brain is gigantic: It
contains about 1011 neuron cells, each of which is con-
nected to 103–104 other neurons via synaptic couplings.
The construction of the detailed map of all neuron con-
nections in the human brain is beyond imagination and
will be so in the future.

In the viewpoint of statistical physics, on the other
hand, understanding the qualitative collective behavior
of the brain, although it originates from the actual de-
tailed interactions of neurons and abundant biochemical
substances, may not require such a detailed microscopic
map of interneuron connections. In this regard, the recent
study by Eguı́luz et al. in Ref. [4] draws much interest:
Brain activity has been measured from 32� 64� 64
sites (called voxels) and the intervoxel correlation has
been used to map out the functional network of the human
brain. Although the number of voxels in Ref. [4] is more
than a million, each voxel still contains O�105� neuron
cells. Consequently, one can say that the brain functional
network in Ref. [4] has been based on heavily coarse-
grained information, and thus it is not clear whether the
observed scale freeness of the network is a genuine
emerging property of actual interneuron connections or
not. Very recently it has been found that a very simple
vertex merging process results in scale-free networks,
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regardless of the initial network structure [5]. In the
present context, this observation may suggest that if the
network is too coarse-grained, one cannot trust the re-
sulting scale-free distribution since it may not reflect the
structure of the original network but is a simple artifact
of coarse graining.

In this Letter, we start from model scale-free networks
that are geographically embedded [6], and then repeat
several steps of geographic coarse graining. We find that
the coarse-graining process does not change important
properties of the original network. In particular, the
degree exponent �, the clustering property, the assorta-
tive feature, and the hierarchical structure do not change
much upon the iteration of the geographic coarse grain-
ing. Our result suggests that the scale-free feature of the
human brain functional network may not be the artifact
of coarse graining, and thus the increase (or the decrease)
of the size of voxels is expected not to change the main
results of Ref. [4]. We also suggest that one can use the
geographic coarse-graining method presented in this
Letter to subtract a smaller network from the original
larger network, without destroying important structural
properties. This can be very useful when the network is
too big to be handled for a given computational capability.

We first build the geographically embedded scale-free
network following Ref. [6]: N � L� L vertices are put
on lattice points of the two-dimensional square net, and
then the degree k of each vertex is chosen according to the
degree distribution function p�k� / k��. A vertex v is
selected at random and then its assigned degree kv is
realized on the basis that the geographically closer verti-
ces (within the distance proportional to

�����

kv
p

) are con-
nected first. As the procedure is repeated over vertices,
some vertices may not fulfill their assigned degrees if all
their possible target vertices have already exhausted their
allowed number of edges. When this happens, those ver-
tices have degrees different from the initially assigned
ones, and there appears the cutoff degree scale (and the
corresponding cutoff length scale) beyond which p�k�
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deviates from the power-law form p�k� � k�� (see
Ref. [6] for details).

Once the network is constructed in this way, we repeat
the following geographic coarse graining, which is in
parallel to the Kadanoff block spin renormalization-
group procedure in standard statistical mechanical sys-
tems (see Fig. 1): Four vertices on each square box of the
size 2� 2 are merged to a single vertex and accordingly
the edges connecting intrabox vertices (dashed lines in
Fig. 1) are disregarded, but the interbox connections are
kept (thin solid line in Fig. 1). We also keep track of how
strong the edges are by assigning the weight wvw that is
simply the number of edges connecting two merged ver-
tices v and w. For example, in Fig. 1 there exist two edges
(thin solid line) connecting the two square boxes before
the merging, which gives rise to the weight w � 2 for the
edge (thick solid line) connecting the two vertices after
the merging.

If we keep all the edges in the coarse-grained network,
the average degree increases as the procedure is iterated,
resulting in the fully connected network eventually. To
remedy this, we fix the average degree at each step of
coarse graining by removing weaker edges with smaller
values of the weight. Suppose that we have to remove Mr
edges to keep the average degree the same, and that there
are Mw edges of the weight w. For example, for Mr <
Mw�1, randomly picked Mr edges of w � 1 are removed.
If Mw�1 <Mr <Mw�2, all w � 1 edges are removed and
Mr �Mw�1 edges with w � 2 are randomly deleted . The
above procedure makes sense since in real situations it is
common that the coarse graining is often accompanied by
the change of the sensitivity of the measurement: When
the system is looked at from a far distance, we only have
interest in large scale structures.

Figure 2 shows the result of the coarse graining.
Original networks of the size 64� 64 are generated
following Ref. [6] for � � 2:5, 3.0, 4.0, 5.0 and the above
explained coarse-graining process is iterated. The net-
=2w

FIG. 1. Coarse-graining procedure. Four vertices in each 2�
2 box are merged to a single vertex. After merging, two edges
(thin solid lines) connecting vertices in different boxes become
one edge (thick solid line) with the weight w � 2. This pro-
cedure is repeated for all 2� 2 square boxes resulting in the
coarse-grained network which is 4 times smaller than the
original network. We then remove edges of smaller weights in
order to fix the average degree.
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work size in this work is smaller than the cutoff length
scale beyond which the network ceased to be scale-free,
which is also seen in Fig. 2(a) where the cutoff degree
scale is absent (see Ref. [6]). One sees clearly that the
coarse-graining process does not change the degree ex-
ponent �. In the terminology of the renormalization-
group (RG) formalism, the scale-free network with any
value of � is the stable fixed point of the RG flow. This
observation implies that the scale-free network in Ref. [6]
possesses neither the degree scales nor the length scales
up to the cutoff length scale which is larger than the
network size in the present study. In Fig. 2, as the coarse-
graining process is iterated the scale-free region appears
only for sufficiently large k regions.

We then study finite-size effects in Fig. 3, which
shows p�k� at the nth iterations for initial networks of
various sizes (a) 32� 32, (b) 64� 64, (c) 96� 96, and
(d) 128� 128 (all for � � 3). Clearly exhibited is that as
the initial network size is increased the network still
remains scale-free even after many steps of iterations,
which then excludes the possibility that observed behav-
iors are finite-size artifacts. The scale-free degree distri-
bution detected in the human brain functional network
[4] does not actually imply that the neural network of
human brain is scale-free. One reason is because the
technique in Ref. [4] only measures the functionality
correlation of two separate voxels, not the actual path of
voxels through which biochemical signal transfers. One
can also argue that since each voxel contains a large
number of neurons [about O�105�], the observed scale-
free distributions can be the artifact of the coarse grain-
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FIG. 2. Degree distribution p�k� versus the degree k for
geographically embedded scale-free networks. The original
64� 64 networks in (a) with the degree exponents � � 2:5,
3.0, 4.0, and 5.0 are coarse-grained n times; (b) n � 1,
(c) n � 2, and (d) n � 3. Clearly shown is that the degree
exponent does not change upon the iteration of coarse graining.
Full lines in (a)-(c) are for the power-law distributions with the
exponents 2.5 and 5.0, while in (d) only the line for the
exponent 2.5 is shown for comparison. � values in (b)-(d)
only indicate the degree exponents for the corresponding
initial networks.
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FIG. 4. The clustering coefficient C�k� versus k for the 128�
128 network with � � 3 at the nth iteration step of coarse
graining for (a) n � 0 , (b) n � 1, (c) n � 2, and (d) n � 3.
The qualitative feature remains the same upon coarse-graining
procedure.
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FIG. 5. (a)-(c) Density plot of the degrees kv and kw where v
and w are two vertices connected by each edge. A brighter
region indicates that there are more edges in that region. The
initial network shows disassortative behavior (higher kv prefers
lower kw, and vice versa), which remains qualitatively the same
as the coarse-graining procedure proceeds n times: (a) n � 0
(initial network), (b) n � 1, and (c) n � 2. (d) Assortativity
coefficient r versus the number n of iterations of coarse grain-
ing. After the coarse graining, the network remains to be
disassortative.
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FIG. 3. Degree distribution p�k� versus the degree k for the
networks with the degree exponent � � 3. The original net-
work sizes are (a) 32� 32, (b) 64� 64, (c) 96� 96, and
(d) 128� 128. The resulting coarse-grained network at the
nth iteration displays the same degree exponent.
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ing, considering the recent study in Ref. [5] that scale-
free distributions can emerge from merging. Our main
results [7] in the present study imply that this is not the
case and that accordingly the scale-free distribution in
human brain functional network is expected to be the
genuine property of the brain, not the artifact of the
coarse-grained information.

We next investigate other important structural proper-
ties of networks. Many real networks including Internet,
World WideWeb, and the actor network, are characterized
by the existence of hierarchical structure [8,9], which can
usually be detected by the negative correlation between
the clustering coefficient (see Ref. [2]) and the degree [8].
For example, the Barabási-Albert network [3], which
does not possess hierarchical structure, is known to
have the clustering coefficient Cv of the vertex v inde-
pendent of its degree kv [i.e., C�k� � k0, see Ref. [8]],
while the Holme-Kim model [10] has been shown to
have C�k� � k�1 [11], in accord with the observations of
many real networks [8]. In Fig. 4, we plot C�k� at the nth
iteration step of the coarse graining for the initial net-
work of the size 128� 128 with � � 3. The geographi-
cally embedded network in Ref. [6] is found to be
somehow special since C�k� is better described by C�k� �
k�2 rather than the abundantly found C�k� � k�1. But this
feature remains the same upon the coarse-graining pro-
cedure, implying that the coarse graining does not
change the hierarchical structure of the network.

We next study the assortative mixing characteristics
[12,13] of the network. For the assortative network, ver-
tices with the higher degree tend to have high-degree
neighbor vertices, while for the disassortative network,
higher degree vertices favor lower degree neighbors. The
degrees kv and kw of the two vertices v and w connecting
each edge are measured and then the histogram is com-
puted by using 20� 20 bins in log-log scales in a kv-kw
168701-3
plane. The brightness of the region in Fig. 5(a)–5(c) is
chosen in proportion to the logarithm of the height of the
histogram in that region. Again we found that the coarse-
graining procedure does not change the disassortative
mixing property of the network; i.e., at any iteration
step, the high-degree vertices in the network tend to
have low-degree neighbors. This behavior of the disassor-
tative mixing can also be detected by the assortativity
coefficient r (see Ref. [12] for the definition). If r has
positive value, the network has assortative mixing prop-
erty while it is disassortative otherwise. In Fig. 5(d), r is
shown to have negative values at the n � 0, 1, 2, coarse-
168701-3
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FIG. 6. Geographically embedded WS network at the rewir-
ing probability P � 0:1. (a) Degree distribution p�k� at the
iteration steps n � 0, 1, 2, and 3. (b) Clustering coefficient C�n�
versus n.
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graining steps. The decrease of r with n is not completely
understood, although this dependence of r versus the
network size N appears to be consistent with Ref. [12],
where r tends to approach zero from below as the larger
disassortative network is considered.

So far we have introduced a geographical coarse-
graining procedure and applied it to the geographically
embedded scale-free network in Ref. [6]. Although the
network sizes become smaller as the coarse-graining
procedure proceeds, it has been found that several key
features of the initial networks do not change qualita-
tively. In particular, the degree exponent � does not
change, and the hierarchical structure [detected by the
negative correlation between the clustering coefficient
C�k� versus degree k] and the disassortativity (detected
by more edges connecting high-degree vertices to low-
degree vertices than to high-degree vertices) remain
qualitatively the same. Our geographic coarse-graining
procedure can be useful when the initial network is of a
huge size since one can then systematically reduce the
network size without destroying important characteris-
tics of the network. Modification of the present coarse-
graining method to apply for the network which is not
geographical embedded can be an interesting extension.
The main results also suggest that the scale-free distri-
bution found recently for the human brain functional
network may not be an artifact due to the large voxel
size (each contains O�105� neuron cells), but the genuine
property of the brain.

We finally study the two-dimensional Watts-Strogatz
(WS) network [14], built similarly to Ref. [2]:Vertices are
put on the two-dimensional square lattice points and
every vertex is connected to its nearest and next-nearest
neighbor vertices. Each edge is visited once, and with the
rewiring probability P is rewired to a randomly chosen
vertex. The resulting network belongs to the so-called
exponential network since the tail in the degree distribu-
168701-4
tion is exponentially small.We then iterate our geographic
coarse-graining procedure with the average degree kept
constant at each iteration. In Fig. 6(a), the initial network
of the size 128� 128 at the rewiring probability P � 0:1
is coarse-grained n times. As n becomes larger, the de-
gree distribution remains exponential and tends to satu-
rate. In Fig. 6(b), initial two-dimensional WS networks of
various sizes L � 128, 256, 512, and 1024 at P � 0:1 are
coarse-grained and the clustering coefficient C�n� is plot-
ted as a function of the number n of iterations. As the
coarse-graining process proceeds the clustering coeffi-
cient is shown to decrease towards zero, which indicates
that the RG stable fixed point of the WS network is close
to the random network of Erdös and Rényi.
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