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We investigate the viscoelastic properties of an associating rigid rod network: aqueous suspensions of
surfactant stabilized single wall carbon nanotubes (SWNTs). The SWNT suspensions exhibit a rigidity
percolation transition with an onset of solidlike elasticity at a volume fraction of 0.0026; the percolation
exponent is 2:3� 0:1. At large strain, the solidlike samples show volume fraction dependent yielding.
We develop a simple model to understand these rheological responses and show that the shear dependent
stresses can be scaled onto a single master curve to obtain an internanotube interaction energy per bond
� 40kBT. Our experimental observations suggest SWNTs in suspension form interconnected networks
with bonds that freely rotate and resist stretching. Suspension elasticity originates from bonds between
SWNTs rather than from the stiffness or stretching of individual SWNTs.
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The mechanical properties of associating semiflexible
polymer and rod networks play a critical role in a variety
of materials’ contexts ranging from cross-linked actin
gels [1] to stress-bearing colloidal suspensions [2,3] and
polymeric composites [4–6]. Generally, the rheology of
these networks depends on many factors, including the
bonds between rods, rod concentration, and rod flexibil-
ity. The relationship, however, between the microscopic
structure and the macroscopic elasticity of associating
networks of stiff rods remains essentially unexplored.

In this Letter, we investigate the viscoelasticity of an
associating rigid rod network: aqueous suspensions of
surfactant stabilized single wall carbon nanotubes
(SWNTs). SWNTs have lengths ranging from 100 nm to
a few microns, diameters of �1 nm, and a persistence
length lp � 22 �m [7]. The attraction between bare
SWNTs due to van der Waals interaction is very strong,
�40kBT=nm [9]. By coating SWNTs with sodium do-
decyl benzene sulfonate (NaDDBS) [10], we have been
able to create stable SWNT suspensions that form net-
works at large concentrations, presumably because the
nanotubes form physical bonds with each other along
contacting nanotube segments. The resultant suspensions
provide a fascinating model system, wherein intertube
bonding contributes substantially to the network elastic-
ity. This system contrasts well with cross-linked actin
networks, wherein the elasticity originates from the bend-
ing or stretching of individual filaments [1]. Our mea-
surements are also of potential importance for nanotube
materials processing. SWNTs in isolation possess remark-
able mechanical, electrical, and thermal properties
[8,11,12], and, as a result, networks of nanotubes have
been used as a basis for electrically conductive and me-
chanically tough composites [4,5]. The experiments
herein provide a new rheological understanding about
solutions of SWNTs, which may improve our ability
to control the processing precursors of these novel
composites.
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We find that SWNT suspensions form elastic solids
above a characteristic volume fraction, and we interpret
this transition as rigidity percolation. The percolation
exponent is obtained from the dependence of network
elasticity on rod volume fraction, and comparison with
bond percolation simulations [13] suggests the bonds
between SWNTs freely rotate but resist stretching. All
of the solidlike suspensions exhibit volume fraction de-
pendent yielding at high strain, presumably due to break-
ing of bonds and network reorganization. We introduce a
simple microscopic model that scales out the volume
fraction dependencies of the stress-strain curves, thus
collapsing all data onto a single master curve. The scaling
behavior reveals the dominant contribution to the elastic-
ity of the networks is from the bonds between the SWNTs.
The master curve also allows us to estimate the bond
energy between SWNTs as � 40kBT, in good agreement
with prediction [9].

SWNTs are obtained in raw form from Carbon
Nanotechnologies Inc. (HiPCO). After purification [14],
the material contains >90% SWNTs. The nanotubes
have an average diameter D � 1:1� 0:2 nm and an av-
erage length L � 165� 80 nm [10]. To prepare SWNT
suspensions of volume fraction � � 0:001, we disperse
purified SWNTs in water with NaDDBS surfactant
(C12H25C6H4SO3Na) and bath sonicate the suspensions
for 16–24 h. We obtain SWNT suspensions of �> 0:001
by ultracentrifuging a suspension of � � 0:001 at
340 000 g to sediment the surfactant stabilized SWNTs.
We then high-shear mix sedimented SWNTs with
NaDDBS solutions to prepare suspensions of various
concentrations. The concentration ratio of SWNTs to
NaDDBS is 1:5 by weight for all SWNT suspensions
[10]. Bundling of SWNTs was quantified by diluting
concentrated sample with water and performing atomic
force microscopy measurements [10]. All SWNT suspen-
sions were composed of 55% to 75% single tubes; the
remainder contained small bundles with diameters less
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than 5 nm [10]. Neutron scattering studies also showed
SWNTs behave like rigid rods in suspension [15]. Even
though the SWNTs are coated with surfactant, the sus-
pensions form elastic solids at concentrations above the
SWNT overlap concentration [16] within 24 h after
preparation.

We measured the viscoelastic properties of SWNT
suspensions using a Bohlin Gemini stress controlled rhe-
ometer, Fig. 1 (inset). The samples were loaded between
40 mm diameter parallel plates with a 250 �m gap and
were allowed to equilibrate for 1 h. We did not prestress
the SWNT suspensions because prestressing can align the
SWNTs along the shear-flow direction. In addition, pre-
stressing the samples would have required leaving the
samples undisturbed between the parallel plates for
�24 h to equilibrate; this delay always induced drying
of the samples. During the measurements, we used a
solvent trap and a sample cover to avoid excessive drying.

To elucidate relaxation dynamics, we measure the vol-
ume fraction � dependent viscoelastic storage G0 and loss
G00 moduli as a function of oscillation frequency ! at a
strain amplitude � of 0.01 (see Fig. 1). At � � 0:0025, G0

and G00 drop below the machine sensitivity of 1 m Pa, and
for � � 0:003, G0 and G00 are nearly independent of !.
The dominance of G0 over G00 across the accessible fre-
quency range indicates the network relaxation time is
longer than experimentally accessible. A long relaxation
time implies the bonds between the nanotubes prevent
thermally induced structural relaxation of the material.

The elastic shear modulus at small frequencies is de-
fined as the plateau modulus G0

0 and is plotted as a
function of � in Fig. 2. We interpret the greater than 2
orders of magnitude jump in G0

0 for � between 0.0025 and
0.003 as rigidity percolation. Near the percolation thresh-
old, G0

0 / 	�
����, where �� is the percolation volume
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FIG. 1. The volume fraction � dependent viscoelastic storage
G0 (solid symbols) and loss G00 (open symbols) moduli versus
oscillation frequency ! for SWNT suspensions (circles, � �
0:03; squares, � � 0:0075; up triangles, � � 0:004; down
triangles, � � 0:003). Inset: A schematic of the rheometer.
The components of the complex shear modulus G�	!� �
G0	!�  iG00	!� are obtained from measurements of the in-
phase and the out-of-phase components of the shear stress �
with respect to an oscillatory strain �.
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fraction, and � is the percolation exponent. By varying ��

to minimize the error in the slope of a double log plot of
G0
0 versus 	�
��� (see Fig. 2, inset), we obtain �� �

0:0026, approximately twice the estimated overlap vol-
ume fraction �� � 0:0014 [16]. This higher concentration
is sensible since two rods are the minimum number
needed to form a connected element (corresponding to
��), but at least three rods are needed to form a stress-

bearing structure [18].
We determine a percolation exponent � � 2:3� 0:1

from the slope of the double log plot of G0
0 versus 	�


��� [19]. A percolation exponent of 2:1� 0:2 has been
reported for simulations of percolating bonds that resist
stretching but are free to rotate [13]. In contrast, an
exponent of 3:75� 0:11 is predicted for bonds that resist
stretching and rotating [13]. Recent simulations have
suggested that rigidity percolation of semiflexible rods
can be explained in terms of the bending of the filaments
(nonaffine deformation) [20–22]. Although we do not
entirely rule out the possibility that SWNT suspensions
belong to this new class, the absence of a three-
dimensional theory and the SWNT stiffness [7] motivate
us to interpret the results as central force bond percolation
[13]. Thus our measurements of linear elasticity suggest
SWNT networks are composed of freely jointed, associ-
ating rods.

The microscopic structure of the SWNT network is
revealed through measurements of nonlinear rheological
responses. To this end, G0 and G00 at 1 Hz are shown in
Fig. 3(a) as a function of strain amplitude � and volume
fraction �. The SWNT suspensions do not show strain
hardening, analogous to cross-linked actin solutions [1];
rather they exhibit strain weakening and a characteristic
� dependent yield strain [23]. The loss modulus also
shows a slight upturn before fluidization. Many soft ma-
terials exhibit similar nonlinear viscoelastic responses
[24]. However, unlike SWNT suspensions, the yield strain
for such materials is typically independent of �. We find
empirically it is possible to eliminate the � dependence
of the strain by multiplying � by a scale factor propor-
tional to 	�
���1=2 [see Fig. 3(b)]. This shifts the
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FIG. 2. The storage plateau modulus G0
0, obtained at 1 Hz,

versus volume fraction � of SWNT suspensions. Inset: G0
0

versus the reduced volume fraction 	�
���.
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FIG. 3. (a) The volume fraction � dependent storage G0 (solid
symbols) and loss G00 (open symbols) moduli versus strain
amplitude � at 1 Hz for SWNT suspensions (circles, � �
0:03; squares, � � 0:0075; up triangles, � � 0:004). (b) G0

and G00 as a function of scaled �, for various �. (c) A con-
centrated rod network describes the structure of the SWNTs in
the linear viscoelastic regime. (d) The structure of the network
during the loss of rigidity.
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moduli-strain curves so the yield strain for all samples
occurs at the same ‘‘rescaled’’ strain. The scaling pro-
vides a clue to the underlying microscopic mechanism for
strain induced fluidization.

In order for strain induced fluidization to occur, each
rod must debond from its neighbors and disentangle from
the network. This simple fluidization criterion is based on
microscale rod network motions [see Figs. 3(c) and 3(d)].
For small shear [e.g., in the x direction, Fig. 3(c)], net-
work deformation is small and elastic, corresponding to
the linear regime of the network viscoelasticity. The
response becomes nonlinear when the bonds between
the nanotubes break, i.e., when the nanotubes rotate
through angles with arc length larger than the bond
interaction range [Rmin � 1:7 nm for two (10,10) carbon
nanotubes [9] ]. At the onset of fluidization (G00 >G0), the
network is destroyed because the nanotubes have rotated
through angles large enough to disentangle the tubes from
one another [Fig. 3(d)]. We note that, in contrast to recent
simulations suggesting network deformation is nonaffine
near the percolation threshold [25], we have assumed the
deformation is affine in this analysis, thus implying the
fluidization criteria is independent of the stiffness of the
SWNTs.

The maximum angle before fluidization depends only
on the microscopic geometry of the network [see
Fig. 3(d)]. In other words, the arc length of the maximum
angle is approximately the length of the rod, the diameter
of the rod, or the mesh size of the network. The mesh size
is the only length scale that agrees with the scaling found
empirically. We suggest the maximum angle a rod can
rotate before fluidization is approximately
168102-3
tan�max � �=
�����������������
L2 
 �2

q
; (1)

where L is the nanotube length and Deff is the effective
diameter of the nanotube with its surfactant layer. The
mesh size of the network, � �

������������
3=2�

p
Deff , is taken to be

the lattice constant of a cubic lattice formed by over-
lapping rods [26,27]. The expression for �max is valid
provided that Rmin < �. Note, tan�max reflects the micro-
scopic structure of the network. If the network structure
were unimportant, then we would expect tan�max
independent of volume fraction. We can write Eq. (1)
as a function of 	�
��� because �	� � ��� � L �

Deff=
������
��

p
at the onset of rigidity percolation, i.e.,

tan�max �
1=

����
�

p

���������������������������
1=�� 
 1=�

p �

�
��

�
��

�
1=2

: (2)

Replacing
������
��

p
with Deff=L in Eq. (2) gives tan�max �

Deff=L	�
���1=2. Since tan� equals the macroscopic
strain �, tan�max defines the macroscopic yield strain �y
at fluidization, and we recover the scaling relation found
empirically. The model suggests that far above the perco-
lation threshold, the fluidization strain will scale as
�
1=2. Thus the more tightly packed carbon nanotube
networks yield more easily. A similar scaling relation
was shown for cross-linked actin solutions [1], but for a
physically different reason. Polymers such as actin yield
because of the stretching of individual filaments before
breakage [28].

In Fig. 4(a) we show the stress � measured at 1 Hz as a
function of the strain � for various �. Notice � increases
linearly with � and then reaches a plateau for all volume
fractions except � � 0:003. The plateau is indicative of a
yielding event. Assuming the loss of rigidity occurs after
the nanotubes disassociate from their neighbors, these
yield stresses �y can be used to estimate the interaction
energy between the rods [23]. This type of analysis has
been used with success to infer the attractive interactions
energies in colloidal gels [29]. In order to apply this
analysis, we must eliminate the volume fraction depen-
dence from the stress so the scaled plateau stress will be
proportional to the bond energy [29]. We find empirically
it is possible to eliminate the � dependence of the stress
by multiplying � by a scale factor proportional to 	�


���
3=2 [Fig. 4(b)]. The scaling of the stress can be most
easily understood in terms of bonding in the network. In
the concentrated limit (� � ��) the number density of
bonds is proportional to 1=�3 / �3=2. Therefore, we can
eliminate the concentration dependence of � with a scale
factor proportional to �
3=2, provided the bond interac-
tion energy is independent of the volume fraction [30].

We generate a master curve for all stress-strain data by
scaling the strain by 	L=Deff�	�
���1=2 (which ac-
counts for the microscopic reorganization of the network)
as before, and scaling the stress by 	Vrod=kBT��
	�
���
3=2 (which accounts for the bond density of
168102-3
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FIG. 4. (a) Volume fraction � dependent stress � versus strain
� at 1 Hz for SWNT suspensions. Circles, diamonds, squares,
circles with dot, up triangles, and down triangles are for � �
0:03, 0.015, 0.0075, 0.005, 0.004, and 0.003, respectively.
(b) Master curve of scaled � versus scaled �.
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the network), where Vrod is the volume of a surfactant
coated nanotube [Fig. 4(b)]. Note, a priori we could have
chosen other volumes in the stress prefactor, e.g., D3

eff ,
DeffL

2, or L3; however, these other prefactors gave un-
physically large or small bond energies, and therefore
were discarded. When cast in this dimensionless form,
the plateau of the scaled stress corresponds to the energy
per volume of rod in units of kBT and gives a bond
interaction energy, Ebond � 40kBT. The scaling implies
the yield stress is given by �y � Ebond	�
���3=2=Vrod.
If we assume that the bonding occurs due to the
van der Waals interaction across the diameter of a
SWNT ( � 1 nm), the estimated Ebond agrees with the
theoretical prediction for the interaction energy between
bare (10,10) SWNTs [9].

We use the expressions for �y and �y to express the
linear elasticity in terms of the interaction energy, G0 �

�y=�y � 	�
���2Ebond=D3
eff . The � dependence of this

expression is in agreement with experiment (Fig. 2). For
� � 0:03, this expression gives G0 � 2000 Pa, in agree-
ment with the measured elasticity of nanotube networks
(Fig. 1). If the elasticity were to originate from the bend-
ing or stretching of individual tubes, for the same � we
would expect G0

bending � kBTlp=�4 � 5� 104 Pa [31] and
G0
stretching � kBTl

2
p=�

5 � 4� 107 Pa [28].
In conclusion, we have measured the linear and non-

linear viscoelasticity of SWNT suspensions. The rod net-
168102-4
works exhibit rigidity percolation but differ from other
semiflexible filament networks in that the elasticity ap-
pears to be due to the bonding (rather than stretching or
bending) of the rods. The data suggest SWNTs in suspen-
sion form elastic networks held together by freely jointed
bonds of interaction energy � 40kBT.
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