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Long-Range Interlayer Interactions in Ferroelectric Liquid Crystals
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Some smectic liquid crystals exhibit a series of phases, including ferroelectric, antiferroelectric, and
ferrielectric commensurate structures as well as an incommensurate phase. A long-standing problem
has been to understand the origin of the long-range interaction responsible for this rich variety of
phases. We study a model that incorporates thermal fluctuations in the flexing of layers and find that it
supports commensurate and incommensurate structures. The vibrational entropy competes with an
assumed helical interaction between nearest-neighbor layers. An increase in temperature then leads to
an unwinding of the helix that proceeds at first through commensurate phases and then into an
incommensurate phase. This result is consistent with the experimentally observed ‘‘distorted clock
model.’’
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FIG. 1. In the distorted clock model, structures with a peri-
odicity of three or four layers can each be defined by a single
angle � or �.
In smectic liquid crystals, rod-shaped molecules are
arranged in layers, whose normal we take as defining the
z axis. In the smectic-C phase the molecules are tilted
from the layer normal. This tilt identifies a unique direc-
tion in the x-y plane, along which the c director is said to
lie. If we denote the angle between the c director and the
x axis in the lth smectic layer as �l, we may characterize
the system in terms of how �l changes with increasing l.
When �l remains constant we have a synclinic phase,
while when it increases by � per layer the phase is
anticlinic. In the chiral smectic-C� phases the presence
of a transverse permanent electric dipole moment leads to
the alternative description of these phases as ferroelectric
and antiferroelectric. In some materials there is an even
richer structure, with �l increasing by 2� every three or
four layers (the so-called ferrielectric or intermediate
phases), or advancing in an incommensurate manner.

Experimental studies have found a wide variety of
observed sequences of phases as the temperature is raised
from the melting point through the various smectic
phases [1,2]. Of the many interesting possibilities one
example has the following sequence: Sm-C�

A (antiferro-
electric)–Sm-C�

FI1 (intermediate)–Sm-C�
FI2 (intermedi-

ate)–Sm-C� (ferroelectric)–Sm-C�
� (incommensurate)–

Sm-A (smectic-A) [3]. In other materials, one or more of
these phases may be missing, but the ordering generally
follows in the same sequence. This suggests a common
origin in the underlying mechanism responsible for the
existence of the various phases.

Before recent experimental observations had clarified
the nature of the variation of �l with l, two different
models had been proposed to describe the molecular
arrangement in these materials. In the Ising-like model
[4–6] ��l � �l�1 � �l is restricted to be either 0 or �,
while in the clock model [7–9] ��l � 2�=n, where n is
the number of the layers in the repeating unit cell,
namely, one for ferroelectric, two for antiferroelectric,
and three or four for the intermediate phases. Recent
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experiments [10–12] have ruled out both the Ising-like
model and the pure clock model and have led to the
introduction of the so-called distorted clock model [13–
19]. As indicated in Fig. 1, in this model, for a system
with three-layer periodicity we have ��3m�1 �
��3m�3 � �, and ��3m�2 � 2�� � ��, while a system
with four layers in a unit cell can be characterized by
��4m�1 � ��4m�3 � �, and ��4m�2 � ��4m�4 �
� � � with m � 0; 1; 2; . . . .

The existence of these phases raises a fundamental
question. If the interaction between layers is restricted
to nearest neighbors, then there is no reason why ��l
should not be constant. In order for phases of period three
or four to exist, there must be interlayer interactions
beyond nearest neighboring layers. For commensurate
structures to form, this interaction must be of long range.
What, then, is the mechanism by which the orientation of
the c director in one layer influences that of a distant
layer? Bruinsma and Prost [20] have discussed an inter-
action between layers arising from the effective charge
density produced by in-plane variation in ��l�x; y� and
hence in the electric polarization and suggest that this
may induce a tendency to anticlinic ordering in distant
layers. They did not suggest any mechanism that could
lead to more complex structures.
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FIG. 2. In each smectic layer the c director lies in the x-y
plane at an angle �l to the x axis. The �l in different layers are
coupled by direct short-range interactions and indirect long-
range interactions.
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Here we present a new model from which the distorted
clock structure of the various phases can be derived. In
order to be capable of supporting a variety of commen-
surate and incommensurate phases, a model must have
two components. The first of these is a short-range inter-
action that typically favors a particular relationship be-
tween nearest neighbors. This is usually a tunable term
whose nature varies with some control parameter, such as
temperature or pressure. The second component is a
longer-range interaction, which favors a structure differ-
ent from that preferred by the short-range forces.

In our model of antiferroelectric liquid crystals, the
short-range interaction Vsr will be taken to be a term
favoring a particular value of ��, the angle between
c directors in successive layers. For layers of area L2 we
could choose the form

Vsr � �vL2
X
l

cos��l�1 � �l � ��; (1)

with the parameter v being an energy of interaction per
unit area. This term favors the formation of a helical
ordering in which �l � const� l�. We assume that �
varies with temperature T from a value near zero to a
value near � as the temperature is lowered through the
range in which the multiple smectic-C� phases are found.
There is no explicit microscopic model for this variation,
but its existence can be argued as plausible. It becomes
clear that it is not feasible to develop a microscopic model
for the form of ��T� when one considers some recent
measurements by Cady et al. [21] of the pitch of the helix
in the incommensurate Sm-C�

� phase. There it was found
that the addition of one extra CH2 group to the achiral
alkyl chain of the large molecule 10-OHFBBB1M7 had a
dramatic effect on the pitch of the helix. It not only
changed the pitch by an order of magnitude but also
changed the sign of its temperature dependence. In terms
of our model, the sign of d�=dT was reversed.

The mechanism we propose for the longer-range inter-
action is the contribution to the free energy from the
anisotropy in the force required for the physical bending
of a layer in a smectic-C liquid crystal [22]. This anisot-
ropy causes the energy of distortion of two neighboring
layers to depend on the extent to which their c directors
are aligned. The spontaneous thermal fluctuations in the
shape of a layer give contributions to the entropy of the
system that reflect the degree of alignment. This effective
long-range elastic interaction is strong enough to induce
commensurate ordering.

Our model consists of N layers of thickness d in a
Sm-C� liquid crystal of density �. In the absence of
thermal fluctuations, each layer lies in the x-y plane, as
shown in Fig. 2. The director in each layer is assumed to
be tilted away from the layer normal by a tilt angle � that
is a constant throughout the sample. The angle �l be-
tween the c director of the lth layer and the x axis is
uniform within each layer and so does not depend on x or
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y. Different layers, however, have different �’s. Thermal
fluctuations then cause a spatially varying displacement
ul�x; y� of the lth layer in the z direction. The dynamic
variables in terms of which the system is defined are then
the N angles �l and the N functions ul�x; y�.

If xl is an axis in the direction of the c director in the
lth layer and yl is the perpendicular axis in the x-y plane,
one can write the elastic energy density of this layer (with
neglect of an unimportant cross term) as

fl �
1

2

�
kx

@2ul

@x2l
� ky

@2ul

@y2l

�
2
; (2)

where kx and ky are the elastic constants for bending the
layer in the two principal directions. Transformed back to
the original coordinates, this expression becomes

fl �
1

2

�
�k� � k� cos2�l�

@2ul

@x2
� 2k� sin2�l

@2ul

@x@y

��k� � k� cos2�l�
@2ul

@y2

�
2
; (3)

with k� � 1
2 �kx � ky�, the average elastic constant, and

with k� � 1
2 �kx � ky�.

The total elastic energy of the system will also include
a contribution due to the compression or expansion of the
thickness of a layer when ul�x; y� varies with l. We asso-
ciate an elastic constant k with this compression energy.
The total effective Hamiltonian of the system is then of
the form

H � Vsr �
ZZ XN

l�1

�
fl �

1

2
k�u2

l �
1

2
�d

�
@ul

@t

�
2
�
dxdy;

(4)

with �ul � ul�1 � ul. Our approach now is to find the set
of values of the macroscopic variables �l that minimize
the free energy of the system. We do this by first finding
the normal modes of excitation of the microscopic vari-
ables ul�x; y� for a given set of fixed values for the �l. We
then add the contribution to the free energy from these
thermal excitations to the short-range potential energy
and minimize this total. Because the frequencies of the
167801-2
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normal modes themselves depend on the �l, this is a self-
consistent procedure.

The system is studied most easily for a given set of
fixed values for the �l if we impose periodic boundary
conditions in a sample of thickness Nd and layer area L2

and write

ul�x; y; t� �
X
q

uq expi�qxx � qyy � qzld�: (5)

Here qx � 2�nx=L, qy � 2�ny=L, and qz � 2�nz=Nd.
This transformation diagonalizes the energy for motion
in the x-y plane but leaves interactions between modes of
different qz. Fortunately, it is a reasonable approximation
to retain only the diagonal terms. The justification for this
lies in the fact the entropy contributed by each normal
mode varies as ln!q, and so it is the low-frequency modes
that make the dominant contribution. We put qx �
q? cos’ and qy � q? sin’ and assume that the symmetry
is broken in such a way that the distribution of the �l is
symmetric about the x axis, causing sums like

P
l sin2�l

to vanish. The order parameter for the symmetry break-
ing is then

J � N�1
X
l

cos2�l; (6)

in terms of which

H � Vsr �
1

2
NL2

X
q

�
�d

@uq

@t

@u�q

@t
�

�
2k�1� cosqzd�

� q4
?

�
k2� � 2Jk�k� cos2’ �

1

2
k2�

��
uqu�q

	

(7)

when terms in
P

l cos4�l are neglected. The dispersion
relation of the normal-mode frequencies is then

��d=k�!2
q � 4sin2

�
qzd
2

�
� �q?d�4�1=��2g�’�2; (8)

where g�’� � c
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with ( � k�=k�
and c � k��=





k

p
d2. Because the low-frequency modes

are dominant, a Debye-like approximation can be made
in which sinqzd can be replaced by qzd.

The contribution to the free energy from the normal
modes will be

F ! � kBT
X
q
ln!q

�
NdL2kBT

8�3

Z �=d

0
dqz

Z �=d

0
q?dq?

Z 2�

0
d’ ln!2

q:

(9)

The upper limit for the integration over q? was chosen to
be about the reciprocal of the layer thickness, since dis-
tinct modes will not exist when the wavelength ap-
proaches molecular dimensions. We drop unimportant
constant terms and integrate over qz and q? to find
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F ! �
NL2kBT

16d2

Z 2�

0
d’ff�g�’��� ln�1�g�’�2�g; (10)

where f�x� � �1=x� arctanx � x arctan�1=x�.
Since the anisotropy parameter ( is small, F ! can be

expanded as a power series in (. To lowest order, the total
free energy can be written as

F � �
v

Nd

X
l

�cos��l�1 � �l � �� � *J2� (11)

with * � ��kBT(2=32d2v��3� �4=c� arctanc � f�c��
and J as defined in Eq. (6).

For any given value of �, the controlling factor is thus
the quantity * that describes the relative strengths of the
long-range and short-range interactions between layers.
There will be a critical value *c���, of order unity, below
which the structure is always incommensurate and above
which it will be commensurate.

The crucial question is whether the proposed long-
range interaction is sufficiently strong to give rise to
commensurate phases, which is equivalent to asking
whether * can be of order unity. We return to the defini-
tion of *, and note that c � 1, since it is a ratio of elastic
constants. We estimate the anisotropy parameter ( by
noting that if the tilt angle � could approach �=2, then
ky would vanish, and we would have ( � 1. If we suppose
( to vary as sin2�, then for a typical tilt angle of 18� we
would have ( � 0:1.We can estimate the magnitude of the
energy d2v by considering the electric field strength E0

necessary to switch a material of dipole moment per unit
volume P0 between phases. At this transition, the electro-
static energy per unit volume, P0E0, will be of the order
of v=d. The switching field is of the order of 0:3�
106 V=m [23], and the dipole moment per unit volume
is probably around 7� 10�4 C=m2 [24]. We then deduce
that for a layer thickness d of 3 nm, the energy d2v will
be around P0E0d

3, or about 5� 10�24 J, making
kBT=d2v about 1000 and * � 1. The magnitudes thus
appear to be in the appropriate range for the proposed
mechanism to be important.

A combination of analytical and numerical methods
was used to find solutions for the system defined by
Eq. (11) for all � and *. These results are shown in
Fig. 3(a). One sees that only a few commensurate phases
exist in this model, and there are no stable phases of order
of commensurability higher than six. The six-layer peri-
odicity, also predicted by Dolganov et al. [18], has not yet
been observed experimentally.

To convert the phase diagram into a prediction of the
sequence in which the different phases appear as the
temperature is raised, we require knowledge of the func-
tion ��*�, which can be obtained from ��T� and *�T� if
these are available. The main dependence of long-range-
interaction parameter * on T will come from its propor-
tionality to (2, since the anisotropy parameter ( will
vanish at the temperature of the transition to the Sm-A
167801-3



FIG. 3. (a) Stable phases as a function of � (helix angle
favored by nearest-layer interactions) and * (strength of
mean-field long-range interaction) in the case of a simple
symmetric short-range interaction. Roman numerals indicate
number of layers per repeat in the commensurate phases.
(b) Schematic phase diagram corresponding to an arbitrary
asymmetric short-range interaction.
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phase. As discussed previously, the dependence of � on T
appears to be very sensitive to the small details of the
molecular structure and so cannot be predicted.We expect
the most common behavior to be a steady reduction from
a value near � to a value near zero as the temperature is
raised. The most common form of ��*� would then be a
curve connecting the lower left part of Fig. 3(a) to the
upper right part. The particular path followed then de-
termines the phase sequence.

The unrealistically simple form of the short-range
interaction Vsr results in the phase diagram in Fig. 3(a)
being symmetric in � about �=2. As a consequence, there
is a phase with a six-layer repeat in addition to the
expected three-layer and four-layer-repeat structures.
When the short-range interaction is modified from the
oversimplified form given in Eqs. (1) and (11) the phase
diagram is altered. For example, strengthening Vsr for
large � distorts the diagram while maintaining its topol-
ogy, while adding to Vsr a term of the form cos�3��l�1 �
�l � ��� changes the topology. The combined effect is
shown schematically in Fig. 3(b), which accommodates
many of the observed phase sequences. More elaborate
modifications of Vsr can produce phases having five-,
seven-, and eight-layer repeats.
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In this study we have explored the consequences of
including in the free energy of a Sm-C� liquid crystal the
entropy due to thermal fluctuations in the shape of the
smectic layers. We find that this term translates into an
effective long-range interaction between c directors in
distant layers. The magnitude of this contribution appears
sufficient to induce a variety of commensurate phases.
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