
VOLUME 93, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S week ending
15 OCTOBER 2004
Importance of the Internal Shape Mode in Magnetic Vortex Dynamics
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We investigate the motion of a nonplanar vortex in a circular easy-plane magnet with a rotating in-
plane magnetic field. Our numerical simulations of the Landau-Lifshitz equations show that the vortex
tends to a circular limit trajectory, with an orbit frequency which is lower than the driving field
frequency. To describe this we develop a new collective variable theory by introducing additional
variables which account for the internal degrees of freedom of the vortex core, strongly coupled to the
translational motion. We derive the evolution equations for these collective variables and find limit-
cycle solutions whose characteristics are in qualitative agreement with the simulations of the many-spin
system.

DOI: 10.1103/PhysRevLett.93.167201 PACS numbers: 75.10.Hk, 05.45.–a, 75.30.Ds
Nonlinear excitations play an important role in various
physical contexts such as light propagation, charge, and
energy transport in condensed-matter physics and bio-
physics, and Bose-Einstein condensation of dilute atomic
gases [1–3]. They also appear in low-dimension magnetic
structures like 2D arrays of magnetic nanodisks and dots
[4,5], rings [6], and stripes (for reviews, see [5,7,8]). In
these systems the topological excitations (domain walls
and vortices) determine the static and dynamic proper-
ties. For instance, when the size of a magnetic nanodisk is
above a critical value, a vortex state is energetically
preferable. Its core region exhibits a bell-shaped structure
of the spin components perpendicular to the plane of the
film [5,7].

Until recently vortex dynamics was studied in the
frame of the Thiele collective coordinate approach [9],
which considers the vortex as a rigid structure not having
internal degrees of freedom (for a review, see Ref. [10]).
The idea is to assume a traveling wave solution whose
time dependence is only in the coordinates of the vortex.
The evolution of these coordinates is then obtained from
the field equations using the traveling wave ansatz.
However, recent experimental [4,5] and theoretical [11–
14] studies indicate phenomena which cannot be under-
stood using this simple approach. Some striking examples
are the switching of the vortex polarization by means of
an applied in-plane (IP) rotating field [12,13,15] and the
cycloidal oscillations of the vortex around its mean path
[11,16]. In these examples the dynamics of the vortex
center is observed to be strongly coupled with spin waves.
One of the first attempts to take into account the internal
structure of vortices was presented in Ref. [14], where in
order to describe the motion of vortices in an inhomoge-
neous medium an internal core mode, slaved to the center
of vortex motion, was shown to be important.
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Here we confirm that the internal degrees of freedom
play a crucial role in the dynamics of vortices driven by
an external time-dependent magnetic field in a classical
spin system. We also present a collective variable (CV)
theory describing how the internal mode couples to the
translation mode. This theory can be seen as the first
generalization to vortices of the CV theory developed
for 1D Klein-Gordon kinks by Rice [17,18], which in-
cludes as CV the position as well as the width of the kink.

Specifically we study the dynamics of one vortex in the
classical 2D Heisenberg easy-plane ferromagnet under
the action of an applied spatially homogeneous IP rotating
field B�t� � �B cos!t; B sin!t; 0�. Numerical simulations
show that the vortex center tends to a circular trajectory,
which is a limit cycle, stable for a broad range of field
parameters �B;!�. The frequency � of rotation along the
vortex orbit in the limit cycle is much smaller than the
frequency ! of the applied field. This limit trajectory
cannot be obtained from the Thiele equations for the
vortex coordinates Z�t� � X�t� � iY�t�. Taking into ac-
count only the internal structure of the vortex, in our
case the width l�t� of the core, and precession of spins as a
whole, in our case the phase ��t�, as dynamical variables
coupled with the vortex coordinates, Z�t�, one can under-
stand the vortex dynamics.

We start with the Heisenberg Hamiltonian for classical
spins Sn located at sites n of a 2D square lattice, plus a
Zeeman interaction with the IP rotating field:

H � �
J
2

X
�n;n0�

�Sn 	 Sn0 � �SznS
z
n0 
; (1a)

V �t� � ��B
X
n

�Sxn cos�!t� � Syn sin�!t�
; (1b)

where J > 0 is the exchange integral, � is the anisotropy
constant (0< � � 1), � � 2�B=" is the gyromagnetic
2004 The American Physical Society 167201-1



20 30 40 50

20

30

40

50

20 30 40 50

20

30

40

50 FIG. 1. Two trajectories of a vortex
from simulations of the many-spin
model (1), in a system of radius L �
36a, in the presence of a rotating field
( � 0:02, b � 0:004), damping � �
0:01, and anisotropy � � 0:08. For this
field, all trajectories converge to the
same circle independently of the vortex
initial position, providing it is not too
close to the system border.
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ratio, and the sum is over all lattice sites n and its nearest
neighbors n0. A magnetostatic (dipolar) interaction term
was taken into account by its effective action on the
anisotropy and conditions at the borders. For very thin
and extended magnetic films this term leads to a renor-
malization of the anisotropy constant and to free bound-
ary conditions [19].

The continuum approach for the model (1) is formu-
lated in terms of the canonically conjugated variables
m�x; t� � mz�x; t� � Sz�x; t�=S and ��x; t�, with mx �

imy �
���������������
1�m2

p
exp�i��. The total energy reads

E �
JS2

2

Z
d2x

�
�rm�2

1�m2 � �1�m2��r��2 �
m2

l20

�

�
�BS

a2
Z
d2x

���������������
1�m2

p
cos���!t�: (2)

where a is the lattice constant and l0 � a=
������
4�

p

 a is the

characteristic magnetic length of the model. The dynam-
ics of the system (2) is governed by the Landau-Lifshitz
equations including Gilbert damping,

@�
@t

�
a2

S
�E
�m

�
�

�1�m2�

@m
@t

; (3a)

@m
@t

� �
a2

S
�E
��

� ��1�m2�
@�
@t

; (3b)

with a damping constant �. These equations can be de-
rived from the Lagrangian

L � �
S

a2
Z
d2x�1�m�

@�
@t

� E (4)

plus a dissipative function

F �
�S

2a2
Z
d2x

�
1

1�m2

�
@m
@t

�
2
� �1�m2�

�
@�
@t

�
2
�
:

(5)

The simplest nonlinear excitation in the system is a
vortex state with an out-of-plane core [20,21]. For a
circular system of radius L and free (Neumann) boundary
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conditions, a static vortex solution is approximately given
by [16]

m�z� � m0�jz� Zj=l0�; (6a)

��z� � arg�z� Z� � arg�z� �Z� � argZ; (6b)

where z � x� iy is a point in the XY plane and Z �
R exp�i�� is the coordinate of the vortex center. The
‘‘image’’ vortex at �Z � ZL2=R2 is added to satisfy the
boundary conditions, and the last term in (6b) is a con-
stant inserted to have a correct limit for L ! 1. The
function m0���, with � � jzj=l0, is the solution of a
boundary problem which can be obtained numerically
[22], with m0�0� � �1, m0�� ! 1� ! 0.

To investigate the vortex dynamics in the presence of
the rotating field, we integrated numerically the discrete
Landau-Lifshitz-Gilbert equations for the model (1),

dSn

dt
� �Sn �

@�H �V �

@Sn

�
�
S
Sn �

dSn

dt
: (7)

The details of the simulations are given in Ref. [12]. To
avoid switching phenomena observed in Ref. [12] we
restricted ourselves to the case when m0�0�> 0 and !>
0. We have fixed the anisotropy � � 0:08 (l0 � 1:77a) and
the damping � � 0:01 and varied the parameters �b;  ; L�
where b � �B=JS and  � !=JS.

Given a combination of the parameters � ; b� of the
field, the radius L of the system and the damping �, we
have observed that either the vortex escapes from the
system through the border or it stays inside for all times.
In the latter case, it can approach a limit cycle for a broad
range of the field parameters (for L � 36a, e.g., 0:002<
b< 0:008 and 0:02<  < 0:07). Figure 1 shows two vor-
tex trajectories starting from different positions and con-
verging to the same circle. To exist, the limit cycle needs
both magnetic field and damping: once it is attained,
switching off or changing either of them destroys imme-
diately the circular trajectory. If the amplitude b is not
large enough, the damping will dominate and the vortex
will escape from the system following a spiral. If the
amplitude is too large (for given  and L) the vortex will
167201-2
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also escape due to an effective drift force exerted by the
field. This is also the case when the frequency is very
small, such that the field is practically static. If both b and
 are too large, the field can destroy the excitation creat-
ing many-spin waves and new vortices can be generated at
the boundary. All these extreme cases constrain the size
and shape of the regime of parameters �b;  � where the
circular limit cycles appear, for a given L (more details
will be given in a forthcoming paper). The limit cycles
exhibit two main features: (i) the orbit frequency � is
smaller than the driving frequency !, and (ii) the orbit
radius R increases linearly with the size L of the system.

To describe analytically the observed vortex dynamics,
a standard procedure due to Thiele [9] is to use the
traveling wave approach, assuming m � m�z� Z�t�
.
At zero magnetic field, this method describes very well
the dynamics of the vortex: without dissipation it under-
goes a circular motion [10] while damping makes it exit
the system following a spiral trajectory. This simple
approach fails with a rotating magnetic field because
the field excites low-frequency quasi Goldstone modes
[12,15], which can couple with the translation mode
[13]. Therefore we generalize the collective variable ap-
proach by the following Ansatz:

m�z;t��m0

�
jz�Z�t�j

l�t�

�
; (8a)

��z;t�� arg�z�Z�t�
�arg�z� �Z�t�
�argZ�t����t�;

(8b)

which describes a mobile vortex structure like (6), in-
cluding a precession of the spins as a whole [through
��t�] and dynamics of the vortex core [through l�t�].

We found it convenient to use, instead of l�t�, the z
component of the total spin,

M�t� �
S

a2
Z
d2xm�z; t� � M0

�
l�t�
l0

�
2
; (9)

which is related to the total number of ‘‘spin deviations’’
or ‘‘magnons’’ bound in the vortex [23]. Here M0 �
Sn0�l0=a�2 is related to the characteristic number of
magnons bound in the static vortex, and n0 � 2#�R
1
0 �d�m0��� � 8:63. Note that without dissipation and

for zero field, M is a constant of motion.
To construct the equations of motion for the collective

variables Xi � fR�t�;��t�;M�t�;��t�g we insert the
Ansatz (8) in the ‘‘microscopic’’ Lagrangian (4) and
dissipation function (5) and calculate the integrals to get
an effective Lagrangian

L � M _��
#S

a2
R2 _�� #JS2 ln

L2 � R2

l0L
�
#JS2

2
ln
M
M0

�
#JS2

2

M
M0

�
#LS�B

a2
R cos�����!t�; (10)
167201-3
and an effective dissipation function

F �
�#S

2a2

�
� _R2�R2 _�2� ln

L
l0
�L2 _�2�2R2 _� _��

C _M2

M

�

(11)

with

C �
1

2

l20
M0

Z 1

0

�
m0

0���

1�m0���
2

�
2
�3d� � 0:48

l20
M0

:

In Eqs. (10) and (11) we assumed that the vortex never
comes close to the boundary (R � L). The first two terms
in Eq. (10) result from the first integral (‘‘gyrotropic’’
term) in the Lagrangian (4), the next three terms result
from the first integral in the energy (2), and the last term
in Eq. (10) comes from the Zeeman interaction in (2). The
equations of motion are then obtained from the Lagrange
equations

@L
@Xi

�
d
dt

�
@L

@ _Xi

�
�
@F

@ _Xi
:

After scaling the time to % � JSt and defining as before
b � �B=�JS� and  � !=�JS�, we obtain the final collec-
tive variable equations

R% �
�R
2

�
�% ln

L
l0
��%

�
�
bL
2

sin�����  %�;

(12a)

�% �
a2

L2 � R2 �
�R%

2R
ln
L
l0
�
bL
2R

cos�����  %�;

(12b)

1

#S
M% � �

�

a2
�L2�% � R2�%� �

bLR

a2
sin�����  %�;

(12c)

1

#S
�% �

1

2

�
1

M0
�

1

M

�
�
�C

a2
M%

M
; (12d)

where the subindex �	 	 	�% denotes the derivative with
respect to the scaled time.

The set of Eqs. (12) describes the main features of the
observed vortex dynamics, and yields the circular limit
cycle for the trajectory of the vortex center; see Fig. 2.
The radius and frequency of this limit cycle are of the
same order as those of our simulation results. In particu-
lar, in the limit cycle, � � �t, and � is smaller than the
driving frequency !. Equations (12a) and (12b) reduce to
the Thiele equations for the coordinates �R;�� of the
vortex center when M and � are omitted, and in this
case no stable closed orbit is possible. Only including the
internal degrees of freedom �M;�� one can obtain a
stable limit cycle. Its characteristics can be found by
setting

R% � M% � 0; �% ��% �  :
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FIG. 2. Two trajectories of a vortex from the collective vari-
able Eqs. (10)–(12), starting from different initial positions
with field parameters  �0:02, b � 0:004. Dashed line: R�0� ����
2

p
, ��0� � #=4, ��0� � 3#=2. Solid line: R�0� � 5:3, ��0� �

#=4, ��0� � #=2. Other parameters: � � 0:01 and � � 0:08.
System radius: L � 36a.
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This yields an asymptotic behavior of the orbit radius,
R� bL=�, which is valid for large system sizes, L 
 l0.
This linear dependence of R on L is also observed in our
simulations.

In conclusion, we developed a new collective variables
approach which describes the vortex dynamics under a
periodic driving, taking into account internal degrees of
freedom. To our knowledge, it is the first time that an
interplay between internal and external degrees of free-
dom, giving rise to the existence of stable trajectories, is
observed in the case of 2D magnetic structures. This col-
lective variable approach is very general and could de-
scribe the dynamics of different 2D nonlinear excitations,
e.g., topological solitons in 2D easy-axis magnets [24].
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