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Probing Microcavity Polariton Superfluidity through Resonant Rayleigh Scattering
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We study the motion of a polariton fluid injected into a planar microcavity by a continuous wave
laser. In the presence of static defects, the spectrum of the Bogoliubov-like excitations reflects onto the
shape and intensity of the resonant Rayleigh scattering emission pattern in both momentum and real
space. We find a superfluid regime in which the Rayleigh scattering ring in momentum space collapses
as well as its normalized intensity. We show how collective excitation spectra having no analog in
equilibrium systems can be observed by tuning the excitation angle and frequency.
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FIG. 1. (a) Linear dispersion of the lower (LP) and upper
(UP) polariton branches. Typical position of the pump wave
vector kp (arrow), well in the parabolic region of the LP
dispersion; the dashed line is the parabolic approximation at
small k. (b) Internal versus incident intensity curve showing
bistable behavior. The dashed branch is unstable: the inversion
points A and B are, respectively, due to a single-mode (Kerr) or
a multimode (parametric) instability. Excitation parameters:
kp � 0:314 �m
1, !p 
!LP�kp� � 0:47 meV. Cavity pa-
rameters are taken from Ref. [11]: � � 0:1 meV, !X � !0

C �
1:4 eV, 2�R � 5 meV.
The concept of a quantum fluid has played a central
role in many fields of condensed matter and atomic phys-
ics, ranging from superconductors to Helium fluids [1]
and, more recently, atomic Bose-Einstein condensates [2].
One of the most exciting manifestations of macroscopic
coherence is superfluidity, i.e., the possibility of friction-
less flow [3].

In this Letter, we investigate the superfluid properties
of a two-dimensional gas of polaritons in a semiconduc-
tor microcavity in the strong light-matter coupling re-
gime [4]. In this system, the normal modes are super-
positions of a cavity photon and a quantum well exciton.
Thanks to their photonic component, polaritons can be
coherently excited by an incident laser field and detected
through the emitted light. Thanks to their excitonic com-
ponent, polaritons have strong binary interactions, which
have been demonstrated to produce spectacular polariton
amplification effects through matter-wave stimulated
collisions [5–7], as well as spontaneous parametric in-
stabilities [8,9].

Here, we study the propagation of a polariton fluid in
the presence of static defects, which are known to produce
resonant Rayleigh scattering (RRS) of the exciting laser
field [10–13]. Superfluidity of the polariton fluid mani-
fests itself as a quenching of the RRS intensity when the
flow velocity imprinted by the exciting laser is slower
than the sound velocity in the polariton fluid. Further-
more, a dramatic reshaping of the RRS pattern due to
polariton-polariton interactions can be observed in both
momentum and real space even at higher flow velocities.

As our system is a strongly nonequilibrium one, the
polariton field oscillation frequency is not fixed by an
equation of state relating the chemical potential to the
particle density, but it can be tuned by the frequency of
the exciting laser. This opens the possibility of having a
collective excitation spectrum which has no analog in
usual systems close to thermal equilibrium. We show in
detail how these peculiar excitation spectra can be probed
by resonant Rayleigh scattering.
0031-9007=04=93(16)=166401(4)$22.50 
A commonly used model for describing a planar mi-
crocavity containing a quantum well with an excitonic
resonance strongly coupled to a cavity mode is based on
the Hamiltonian [14]:

H �
Z
dx

X
ij�fX;Cg

�̂y
i �x��h

0
ij � Vi�x�	ij	�̂j�x�

�
�hg
2

Z
dx�̂y

X�x��̂
y
X�x��̂X�x��̂X�x�

�
Z
dx �hFpei�kpx
!pt��̂y

C�x� � H:c:;

(1)

where x is the in-plane spatial position and the field
operators �X;C�x�, respectively, describe excitons (X)
and cavity photons (C). They satisfy Bose commutation
rules, ��̂i�x�;�̂

y
j �x

0�	�	2�x
x0�	ij. The linear Hamil-
tonian h0 is
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�
; (2)

where!C�k� � !0
C

����������������������
1� k2=k2z

q
is the cavity dispersion as

a function of the in-plane wave vector k and kz is the
quantized photon wave vector in the growth direction. �R
is the Rabi frequency of the exciton-cavity photon cou-
pling. A flat exciton dispersion !X�k� � !X will be as-
sumed in the following. In this framework, polaritons
simply arise as the eigenmodes of the linear Hamiltonian
(2);!LP�UP��k� denotes the dispersion of the lower (upper)
polariton branch [Fig. 1(a)].

The external force term proportional to Fp describes a
coherent and monochromatic laser field of frequency !p

(called the pump), which drives the cavity and injects
polaritons. Spatially, it is assumed to have a plane-wave
profile of wave vector kp � sin�p!p=c, �p being the
pump incidence angle, so to generate a polariton fluid
with a nonzero flow velocity along the cavity plane.
The nonlinear interaction term is due exciton-exciton
collisional interactions and, as usual, is modeled by a
repulsive (g > 0) contact potential. The anharmonic
exciton-photon coupling has a negligible effect in the
regime considered in the present study [14]. VX;C�x� are
external potential terms acting on the excitonic and pho-
tonic fields which can model the presence of disorder.
Here, results for the specific case of a point defect will
be presented. Note that point defects can be naturally
present in state-of-the-art samples [15] or even be created
deliberately by means of lithographic techniques.

Within the mean-field approximation, the time evolu-
tion of the mean fields  X;C�x� � h�̂X;C�x�i under the
Hamiltonian (1) is given by

i
d
dt

�
 X�x�
 C�x�

�
�

�
0

Fpei�kpx
!pt�

�
�

�
h0 


i�
2

1

�

�
VX�x� � gj X�x�j2 0

0 VC�x�

��

�

�
 X�x�
 C�x�

�
: (3)

In the quantum fluid language, these are the Gross-
Pitaevskii equations [2] for our cavity-polariton system.
For simplicity, an equal rate � is assumed for the damp-
ing of both the excitonic and the photonic fields. In the
present work, we will be concerned with an excitation
166401-2
close to the bottom of the LP dispersion, i.e., the region
most protected [4] from the exciton reservoir, which may
be otherwise responsible for excitation-induced decoher-
ence [16].

In the homogeneous case (VX;C � 0), we can look for
spatially homogeneous stationary states of the system in
which the field has the same plane-wave structure
 X;C�x; t� � exp�i�kpx
!pt�	 

ss
X;C as the incident laser

field. The resulting equations,�
!X�kp� 
!p 


i
2
�� gj ssX j

2

�
 ssX ��R ssC � 0; (4)

�
!C�kp� 
!p 


i
2
�
�
 ssC ��R ssX � 
Fp; (5)

are the generalization of the state equation. While the
oscillation frequency of the condensate wave function in
an isolated gas is equal to the chemical potential � and
therefore it is fixed by the equation of state, in the present
driven-dissipative system it is equal to the frequency !p

of the driving laser, and therefore it is an experimentally
tunable parameter. As usual, stability of the solutions of
Eqs. (4) and (5) has to be checked by linearizing Eq. (3)
around the stationary state. For !p >!LP�kp�, the rela-
tion between the incident intensity Ip / jFpj2 and the
internal one shows the typical S shape of optical bista-
bility [see Fig. 1(b) and Refs. [17–19]). Note that nice
hysteresis loops due to polariton bistability have been
recently experimentally demonstrated [17] in the case
kp � 0. In the opposite case !p <!LP�kp� (not shown),
the behavior of the system would instead be the typical
one of an optical limiter [19].

In the stability region, the response of the system to a
weak perturbation is obtained using a linearized theory
analogous to the well-known Bogoliubov theory of the
weakly interacting Bose gas [2]. By defining the slowly
varying fields with respect to the pump frequency as
	�i�x; t� � 	 i�x; t� exp�i!pt�, the motion equation of

the four-component displacement vector 	 ~��x; t� �
�	�X�x; t�; 	�C�x; t�; 	��

X�x; t�; 	�
�
C�x; t�	

T reads

i
d
dt
	 ~� � L � 	 ~�� ~fd; (6)

~fd being the source term due to the perturbation and the
operator L being defined as
L �

0
BBBB@
!X� 2gj ssX j

2 
!p

i�
2 �R g ss2X e2ikpx 0

�R !C�
ir�
!p
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2 0 0


g ss�2X e
2ikpx 0 
�!X� 2gj ssX j
2��!p


i�
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�R 
!C�
ir��!p

i�
2

1
CCCCA: (7)

Its eigenvalues give the frequencies of the Bogoliubov modes. For each k, the spectrum is composed of four branches
!�

UP;LP�k�: for each polariton branch (LP or UP), two � branches exist, which are the image of each other under the
simultaneous transformations k ! 2kp 
 k and !! 2!p 
! [20]. Numerical calculations are shown in Fig. 2. For
the sake of clarity, only the branches relative to the LP have been traced, the ones relative to the UP being far away on the
166401-2
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scale of the figure. These numerical results can be under-
stood through the simplified analytical approximation
that follows.

Provided the interaction energy gj ssX j
2 is much smaller

than the polaritonic splitting !UP 
!LP, there is no
significant mixing between the LP and UP branches.
Since we are interested in nearly resonant excitation close
to the bottom of the LP dispersion curve, we can describe
the system in terms of the LP field  LP � XLP X �
CLP C only, XLP and CLP being the Hopfield coefficients
quantifying the excitonic and photonic components. In
the parabolic approximation, !LP�k� ’ !0

LP � �hk2=2mLP

and the self-coupling constant is gLP � gjXLPj
4. The

mean-field shift of the polariton mode is then 	!MF �
gLPj 

ss
LPj

2. Under these assumptions, the spectrum of the
LP Bogoliubov excitations can be approximated by the
simple expression

!�
LP ’ !p � 	k � vp 


i�
2

�
����������������������������������������������������������������������
�2	!MF � $	k 
 �p��$	k 
 �p�

q
; (8)

where 	k�k
kp, $	k � �h 	k2=2mLP, the flow veloc-
ity vp� �hkp=mLP, and the effective pump detuning �p �

!p 
!LP�kp� 
 	!MF.
In the resonant case (�p � 0), the � branches touch at

k � kp. The effect of the finite flow velocity vp is to
FIG. 2. Left panels: Exact Bogoliubov dispersion for the LP
branches calculated from Eq. (7). Right panels: Corresponding
RRS emission pattern in k space. The intensity has been
normalized to the transmitted intensity. The kp point, indi-
cated by the white circles, saturates by far the gray scale.
Resonant case �p � 0, respectively, in the linear regime
(a),(b), with gj�ss

X j
2 � 0:2 meV (c),(d), 1 meV (e),(f). �p > 0

case with gj�ss
X j

2 � 0:04 meV (g),(h). �p < 0 case with
gj�ss

X j
2 � 0:6 meV (i),( j). Pump wave vector: kp �

0:314 �m
1 (a)–(h), 0:408�m
1 (i),( j). Same cavity parame-
ters as in Fig. 1.
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tilt the standard Bogoliubov dispersion [2] via the term
	k � vp. While in the noninteracting case in Fig. 2(a) the
dispersion remains parabolic, in the presence of interac-
tions [Figs. 2(c) and 2(e)] its slope has a discontinuity at
k � kp: on each side of the corner, the � branch starts
linearly with group velocities, respectively, given by
vr;lg � cs � vp, cs being the usual sound velocity of the

interacting Bose gas cs �
���������������������������
�h 	!MF=mLP

p
. On the hystere-

sis curve of Fig. 1(b), the condition �p � 0 corresponds to
the inversion point A. If one moves to the right of the
point A along the upper branch of the hysteresis curve, the
mean-field shift 	!MF increases and the effective pump
detuning �p becomes negative. In this case, as it is shown
in Fig. 2(i), the branches no longer touch each other at kp
and a full gap between them opens up for sufficiently
large values of j�pj (not shown).

On the other hand, the effective pump detuning �p is
strictly positive on the lower branch of the bistability
curve of Fig. 1(b). In this case, the argument of the square
root in (8) is negative for the wave vectors k such that
�p > $	k > �p 
 2	!MF. In this region, the � branches
stick together [14] (i.e., Re�!�	 � Re�!
	) and have an
exactly linear dispersion of slope vp [Fig. 2(g)]. The
imaginary parts are instead split, with one branch being
narrowed and the other broadened [14,20]. For 	!MF >
�=2, that is on the right of point B in Fig. 1(b), the
multimode parametric instability [20] sets in. In the field
of quantum fluids, this kind of dynamical instabilities are
generally known as modulational instabilities [21].

The dispersion of the elementary excitations of the
system is the starting point for a study of its response
to an external perturbation. In particular, we shall con-
sider here a weak and static disorder as described by the
potential VC;X�x�. In this case, the perturbation source
term ~fd � �VX�

ss
X ; VC�

ss
C ;
VX�

ss�
X ;
VC�

ss�
C �T is time-

independent, as well as the induced perturbation 	 ~�d �


L
1 � ~fd. The static disorder resonantly excites those
Bogoliubov modes whose frequency is equal to!p. In the
left panels of Fig. 2, the excited modes are given by the
intersections of the mode dispersion with the horizontal
FIG. 3. Real space RRS emission pattern for a localized
defect at x � y � 0 acting on the cavity photon. The defect
potential has a lateral size of 0:8 �m and a depth of 1 meV.
(a) Linear regime as in Figs. 2(a) and 2(b); (b) superfluid
regime as in Figs. 2(e) and 2(f). In each panel, the emitted
intensity is normalized to the transmitted intensity.
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dotted lines. For the specific example of a spatially lo-
calized defect acting on the photonic component, we have
plotted in the right panels of Fig. 2 and in Fig. 3 the
photonic intensity j Cj2 in, respectively, the momentum
and the real space for different parameter regimes. These
quantities correspond to the experimentally accessible
far- and near- field intensity profiles [11,12,15] of the
resonant Rayleigh scattering of the pump (i.e., the coher-
ently scattered light at the pump frequency ! � !p). A
similar k-space pattern is obtained in the presence of a
disordered ensemble of defects (not shown).

In the linear regime, the k-space emission pattern
[Fig. 2(b)] contains a peak at the incident wave vector
kp, plus the RRS ring [11,15]. In the real space pattern
[Fig. 3(a)], as the polariton fluid is moving to the right,
the defect induces a propagating perturbation with para-
bolic wave fronts oriented in the left direction.

In the presence of interactions, the RRS circle is trans-
formed into a 1-like shape with the low-k lobe more
intense than the high-k one. If �p < 0, the two lobes are
separated by a gap [Fig. 2(j)], while they touch at kp if
�p � 0 [Fig. 2(d)]. In this resonant case, when 	!MF is
large enough for the sound velocity cs in the polaritonic
fluid to be larger than the flow velocity vp, the slope of
the � branch on the low-k side of the corner [Fig. 2(e)]
becomes negative and there is no intersection with the
horizontal dotted line any longer. In this regime, RRS is
no longer possible, and the polaritonic fluid behaves as a
superfluid in the sense of Landau criterion [22]. Once
normalized to the incident one, the RRS intensity is
strongly quenched with respect to the previous cases
and no RRS ring is any longer present. The weak emission
still visible in Fig. 2(f) is due to nonresonant processes,
which are allowed by the finite broadening of the polar-
iton modes. As no propagating mode is resonantly ex-
cited, the perturbation in real space remains localized
around the defect, as shown in Fig. 3(b). On the other
hand, on the bottom of the bistability curve (where �p >
0), the polariton gas is not superfluid. The RRS intensity is
even enhanced with respect to the linear regime because
of the reduced linewidth of the Bogoliubov modes in the
regions where the � branches stick together, as shown in
Figs. 2(g) and 2(h).

Analogous to liquid Helium and atomic condensates
[1,2], the polariton fluid has a superfluid behavior in the
sense of Landau criterion with respect to both elastic and
inelastic processes, if the inequality !�

LP;UP�k�>!p is
satisfied for every k � kp. If the corresponding linear
regime equation !LP�k� � !p has a set of solutions
corresponding to the elastic RRS ring, the effect of super-
fluidity is dramatic as the RRS ring is suppressed. Within
the parabolic approximation in Eq. (8), a simple sufficient
condition for superfluidity is found: �p � 0 and
�mLPv

2
p 
 �h 	!MF�< �hj�pj.

In conclusion, we have shown the strict connection
between the dispersion of the elementary excitations in
166401-4
a quantum fluid of microcavity polaritons and the inten-
sity and shape of the resonant Rayleigh scattering on
defects. In particular, we have pointed out some experi-
mentally accessible consequences of polaritonic super-
fluidity for realistic microcavity parameters. More
generally, thanks to the coupling to externally propagat-
ing light, microcavity polaritons appear to be promising
candidates for the study of novel effects in low-
dimensional quantum fluids.
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