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Breakdown of Classical Nucleation Theory near Isostructural Phase Transitions
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We report simulations of crystal nucleation in binary mixtures of hard spherical colloids with a size
ratio of 1:10. The stable crystal phase of this system can be either dense or expanded. We find that, in the
vicinity of the solid-solid critical point where the crystallites are highly compressible, small crystal
nuclei are less dense than large nuclei. This phenomenon cannot be accounted for by either classical
nucleation theory or by the Gibbsian droplet model. We argue that the observed behavior is due to the
surface stress of the crystal nuclei. The observed effect highlights a general deficiency of the most
frequently used thermodynamic theories for crystal nucleation. Surface stress should lead to an
experimentally observable expansion of crystal nuclei of colloids with short-ranged attraction and of
globular proteins.
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FIG. 1. Sketch of the phase diagram of a binary hard-sphere
mixture of volume fraction � for q � 0:1 and q � 0:05 (inset)
obtained from data reported in Ref. [9]. �rs is the volume
fraction of a reservoir of small spheres in contact with the
system. The dashed curves indicate the metastable solid-solid
phase. Horizontal lines mark the values of �rs where we
performed simulations.
The pathway for crystal nucleation can be strongly
influenced by the presence of metastable phases. This
observation dates back to Ostwald, who formulated his
famous ‘‘step’’ rule stating that the crystal phase that
nucleates from the melt need not be the one that is
thermodynamically most stable, but the one that is closest
in free energy to the parent phase [1]. Recent simulations
[2,3] and density-functional theory [4,5] provide an illus-
tration on a microscopic scale that the vicinity of meta-
stable phases may determine the properties of micro-
scopic crystal nuclei. The relevant metastable phases
need not be crystalline. For example, the presence of a
critical demixing transition in the metastable liquid par-
ent phase may have a dramatic effect on the nucleation
process [3]. This scenario may be relevant for crystal
nucleation in solutions of proteins or colloids, or in liquid
metal alloys.

Virtually nothing is known about the nucleation path-
way for cases where the crystal phase that nucleates is
close to a solid-solid critical point. Such situations can
arise in the nucleation close to the critical point of an
isostructural solid-solid transition. Isostructural solid-
solid transitions are expected to occur in crystalline
alloys near a substitutional order-disorder transition or
in systems of hard colloidal particles with a short-ranged
attraction [6–9]. Here we consider the latter case.
Depending on the range of attraction, the solid-solid
critical point may either be located in a stable or in a
metastable part of the phase diagram. Simulations by
Dijkstra indicate that this is the case for mixtures of large
and small hard colloids [9]. The small colloids (diameter
�s) induce an effective attraction between the large col-
loids (diameter �l). The range of the attraction is deter-
mined by the size of the small colloids. For a size ratio
q � ��s=�l� � 0:05, the phase diagram exhibits a stable
isostructural critical point. For q � 0:1 the range of at-
traction is longer and the isostructural critical point
0031-9007=04=93(16)=166105(4)$22.50 
moves to the metastable region beyond the melting curve
(see Fig. 1).

We performed Monte Carlo simulations to investigate
how the presence of a metastable critical point in the
crystal phase affects the early stages of the nucleation
process.

The direct numerical simulation of a highly asymmet-
ric hard-sphere mixture is computationally demanding
[10]. However, for q sufficiently small, we can account
for the effect of the small spheres by using an effective
potential [9,11]. The range and strength of this interaction
depend on the size and concentration of the small spheres.
The effective pair interaction between a pair of large
colloids in contact with a reservoir of small spheres at
volume fraction �rs is approximately given by
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(1)

where R is the distance between the large colloids, � �
R=�s � 1=q� 1 and 	 � 1=kBT. We focus on small val-
ues of �rs where it is permissible to ignore higher order
corrections to this expansion [11].

We performed constant-pressure Monte Carlo simula-
tions of binary hard-sphere mixture with a size ratio q �
0:1 at two different values of �rs. For �rs � 0:05, there is
only one crystal phase. For �rs � 0:1, a metastable crystal
phase exists between the fluid phase and the equilibrium
crystal phase (see Fig. 1).

We started from a stable liquid suspension ofN � 3375
large colloids and compressed it beyond the freezing
density. We then computed �G, the free-energy barrier
for crystal nucleation, as a function of the size n of the
crystal nucleus (see [12] for technical details). This cal-
culation was repeated at different supersaturations �� �

j�sol ��liqj (where�sol (�liq) are the chemical potentials
of the solid and liquid phases, respectively).

Figure 2 shows the computed crystal-nucleation bar-
riers as a function of nucleus size n for different values of
��. Figure 3 shows how the height of the nucleation
barrier �G
 depends on supersaturation. classical nuclea-
tion theory (CNT) [13] predicts that, at constant super-
saturation, �G
 depends strongly on the solid-liquid
interfacial free-energy density �ls:

�G
 � ��3
ls=��

2�:

One should expect that �ls increases with the strength of
the effective attraction between the large colloids [14],
and hence with the concentration of the small spheres.
Hence �G
 should increase with �rs. This is precisely
what is observed in Fig. 3.
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FIG. 2 (color online). Free-energy crystal-nucleation barriers �G
and (b) �rs � 0:1 for different values of the chemical potential. E
comparison between the highest computed barrier and form predi
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It is instructive to compare the shape of the computed
nucleation barriers with the functional form predicted by
classical nucleation theory (CNT) [13]):

�G � �lsS� j��j�sV; (2)

where S is the surface area of the crystal nucleus, V is its
volume, and �s is the density of the crystal at coexistence.
Figure 2 shows that there is a striking difference in
behavior between the systems with and without a meta-
stable solid phase: in the absence of a metastable solid
phase [Fig. 2(a)], classical nucleation theory accounts
well for the shape of the nucleation barrier. But in the
presence of a metastable solid phase [Fig. 2(b)], CNT
cannot reproduce the shape of the nucleation barrier.
One of the central assumptions of CNT is that the struc-
ture of the crystal nucleus is that of the stable bulk phase
at coexistence. In the presence of a metastable solid
phase, this assumption is violated. This is most easily
seen by considering the density of crystal nuclei as a
function of their size.

As there is some ambiguity in the definition of �c, the
number density of a small crystallite, we computed this
quantity in three different ways. A rough estimate can be
obtained by locating the center of mass of the cluster and
then counting the number of particles inside spheres of
increasing radius. A second estimate is obtained by
matching the distribution of the nearest-neighbors dis-
tances inside a nucleus to that of a bulk crystal. The
density of the bulk crystal that gives the best match
defines �c. A third approach was to perform a Voronoi
construction around each particle inside the cluster. The
density was then defined as the number of particles inside
the nucleus divided by the sum of the volumes of the
Voronoi polyhedra. Figure 4 shows the density of crystal
nuclei of increasing size at �rs � 0:1 and �� � 0:65. The
densities were computed using the three methods de-
scribed above and the difference between the results for
different methods falls within the error bars. For each
size, we considered a sample of 100 different clusters.
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FIG. 3 (color online). Nucleation barrier height �G
 as a
function of supersaturation �� for a system of hard spheres
[20] and a binary mixtures with q � 0:1 at �rs � 0:05 and �rs �
0:1. Error bars on �G
 are of the order of 1kBT.
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The figure shows that the density of clusters increases
with size. To rule out that the observed density change is a
trivial finite-size effect, we repeated the same calculation
for crystal nuclei at �rs � 0:05 where no metastable solid
phase is present. The inset of Fig. 4 shows that, in that
case, the density of the crystal nuclei is effectively inde-
pendent of size. Moreover, for mixtures with a size ratio
q � 0:05 (short-ranged effective interaction) the low-
density solid phase becomes stable [9] near �rs � 0:05,
while the high-density solid phase is metastable (see
Fig. 1). In that case, we always found that the crystal
nuclei had densities corresponding to the low-density
phase.

At the pressures for which we performed the simula-
tions, the dense solid is, in the bulk, always more stable
than the metastable expanded solid. It may therefore seem
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FIG. 4 (color online). Crystal clusters volume fraction as a
function of their size for a binary mixture with q � 0:1 and
�rs � 0:1 at �� � 0:65. The dashed lines indicate the location
of the metastable solid-solid phase. The critical nucleus con-
tains approximately n� 290 particles. The inset graphs the
quantities for �rs � 0:05 at �� � 0:31. Error bars are large
enough to include the estimate obtained with the three methods
described in the text.
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surprising to find that some crystal nuclei have a density
close to that of the expanded solid phase. It is doubly
surprising that it is the small crystal nuclei that have the
lower density. In the Gibbsian droplet model of (liquid-
vapor) nucleation, the free-energy barrier for nucleation
is computed by considering the effect of the Laplace
pressure on the chemical potential of the critical nucleus.
As the critical nucleus is in (unstable) equilibrium with
the parent phase, it must have the same chemical poten-
tial. This is possible if the pressure inside the nucleus (Pn)
is higher than the pressure Pp of the parent phase, such
that �n�Pn� � �p�Pp�. In the droplet model, the pres-
sures difference �P � Pn � Pp is assumed to be equal to
the Laplace pressure 2�=rs, where rs is radius of the
surface of tension. Assuming that we know � and the
pressure dependence of the chemical potential of both
phases, one can then compute r, the radius of the surface
of tension of the critical nucleus, and the nucleation
barrier itself (4��r2=3). In contrast to CNT, the droplet
model allows for the compressibility of the phase that
nucleates. As the Laplace pressure is always positive, the
droplet model predicts that small nuclei are denser than
the corresponding bulk phase. But as Gibbs already real-
ized [15], the droplet model cannot be applied to crystal-
lites because, the excess pressure of crystals is not equal
to 2�=rs. For solid interfaces, one should distinguish
between the surface tension and the surface stress. The
correct expression for the excess pressure inside a critical
crystal nucleus of density � and radius r is (see, e.g.,
Ref. [16]):

�P �
2�� 3��@�@��

r
:

In the present case (hard spheres with short-ranged at-
traction), the derivative @�=@� is large and positive. So
much so that �P can become negative. The theoretical
analysis of Mullins [16] shows that, to lowest order in the
crystal strain, the density change of a crystalline nucleus
is given by

�� �0

�0
� �

�
@�
@�

�
0

3�0

rB
; (3)

where B is the bulk modulus of the solid. To linear order in
the strain, the radius of the critical nucleus is related to
the supersaturation through

r �
2�

PS0��� � PL���
; (4)

where PS0��� and PL��� are the pressures of the bulk solid
and of the metastable liquid at chemical potential �. � is
the surface free-energy density of the strained nucleus.
Note that �� is negative: hence the solid indeed expands.
This expansion is inversely proportional both to the ra-
dius of the nucleus and to the bulk modulus of the crystal.
As B vanishes at the solid-solid critical point, the value of
B in Eq. (3) can be small for nuclei that form close to this
166105-3
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FIG. 5 (color online). Interfacial free-energy density as a
function of supersaturation �� for a system of hard spheres
[20,21] and a binary mixture with q � 0:1 at �rs � 0:05 and
�rs � 0:1. The inset shows the surface tension as a function of
�rs � 0:1. In the latter case, � decreases with increasing super-
saturation. This is compatible with the thermodynamic analysis
of Ref. [16]. The inset shows the surface tension as a function of
�rs � 0:1.
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critical point. The expansion of the nucleus can therefore
be large, in particular, for small r. This is precisely what
we observe in the simulations. The observed expansion of
small nuclei is in stark contrast with the predictions of
both CNT and the droplet model.

Interestingly, the Gibbs expression for the height of the
nucleation barrier is still valid, and this allows us to
compute the surface free-energy density � of the strained
nucleus from

�3 �
3�G


16�
�PS0��� � PL����2: (5)

The resulting values of � are shown in Fig. 5. Finally, we
can estimate the effect of surface stress on the excess
pressure inside the nucleus. To lowest order in the strain,
the strain-induced pressure change �P is given by

�P �
B��� �0�

�0
: (6)

This is a large correction. For the small, expanded nuclei
that we observe, �P=PL ��20. In the vicinity of a solid-
solid transition, higher powers of the strain should be
included to obtain a more accurate estimate of the strain-
induced pressure change.We have not attempted this here:
our objective was simply to show that surface stress has a
large effect on the internal pressure of crystal nuclei. The
effect of surface stress on the density of crystal nuclei
should be experimentally observable in the nucleation of
compressible crystals, such as colloids with short-ranged
attraction and globular proteins. Such an expansion can be
determined by application of the nucleation theorem
[17,18] to the temperature or (osmotic) pressure depen-
dence of the nucleation rate.
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In summary, our simulations illustrate both quantita-
tive and qualitative failures of CNTand the droplet model
in the case of crystal nucleation. For crystals that are less
compressible, the effect becomes small—but it is always
there. Even for vapor-liquid nucleation there may be
residual surface-stress effects in small droplets. This
may explain the puzzling inconsistencies between the
thermodynamical surface of tension and the mechanical
surface of tension, as observed in simulations [19].
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