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Nanovoid Cavitation by Dislocation Emission in Aluminum
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This Letter is concerned with the determination of the transition paths attendant to nanovoid growth
in aluminum under hydrostatic tension. The analysis is, therefore, based on energy minimization at 0 K.
Aluminum is modeled by the Ercolessi-Adams embedded-atom method, and spurious boundary
artifacts are mitigated by the use of the quasicontinuum method. Our analysis reveals several stages
of pressure buildup separated by yield points. The first yield point corresponds to the formation of
highly stable tetrahedral dislocation junctions around the surfaces of the void. The second yield point is
caused by the dissolution of the tetrahedral structures and the emission of conventional 1

2 h110if111g and
anomalous 1

2 h110if001g dislocation loops.
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Spallation damage under dynamic tensile loading is
characterized by the emergence of distributed micro-
cracks or voids in a narrow region of the material, or
spall plane, which may result in the catastrophic failure
of the specimen. Spall has been widely studied experi-
mentally by means of gas-gun driven plate-impact tests
(e.g., [1,2]), high-intensity, pulsed laser shock generators
[3–5], and other experimental techniques (cf. [6] and
references therein). Observations, however, are for the
most part restricted to free-surface velocity measure-
ments and post mortem examination of the specimens
and, therefore, are necessarily indirect.

Molecular dynamics (MD) suggests itself as a natural
approach for understanding the intrinsic mechanisms
underlying the evolution of nanosized voids [7–9].
These studies reveal, among other useful insights, that
nanovoids exceeding a pressure and temperature-
dependent critical size grow by the emission of disloca-
tions and by coalescence with neighboring voids.
However, MD is particularly well suited to the study of
void growth at very high strain rates, often greatly in
excess of those attained experimentally. In addition, re-
liance on periodic boundary conditions limits the range
of elapsed times which can be examined by MD and may
introduce undesirable artifacts. Continuum estimates [10]
suggest that dynamic effects are indeed negligible for
small voids at moderate-to-high strain rates. This points
to the need to complement MD studies with a detailed
analysis of the equilibrium energy landscape and transi-
tion paths accessible to expanding nanovoids.

The technique that we use in order to carry out such an
analysis is the quasicontinuum (QC) method. QC is a
method for systematically coarse-graining lattice statics
models. The method starts with the complete atomistic
system and appends kinematic constraints which restrict
the configuration space of the crystal. The kinematic
constraints are based on the selection of representative
atoms and the use of finite-element interpolation. In order
to avoid full lattice sums, cluster summation rules are
also used. By virtue of these rules, only atoms in small
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clusters surrounding the representative atoms need to be
visited in computing the effective out-of-balance forces.
Finally, the selection of representative atoms is performed
adaptively based on local measures of deformation and
longest-edge tetrahedral bisection. The adaption toleran-
ces are set such that full atomistic resolution is guaran-
teed in the presence of dislocations. The quasicontinuum
method uses empirical potentials directly as the sole
description of material behavior and contains fully atom-
istic lattice statics and continuum elasticity as special
limits. Details of the implementation and an analysis of
the accuracy and convergence of the method may be found
in [11]. Here, the computational cell concerns a 432a0 �
432a0 � 432a0 cube 174 nm in size of fcc Ercolessi-
Adams [12] Al oriented along cubic lattice directions
and nominally containing 3:2� 108 atoms. An equiaxed
5-nm void is initially created in the center of the cell with
full atomistic resolution being provided ab initio within a
16a0 � 16a0 � 16a0 region surrounding the void. The
triangulation is rapidly coarsened with distance to the
void elsewhere, resulting in an initial computational mesh
containing 31 933 nodes.

Recent experimental data [13] suggest that the material
response within a strong shock is essentially volumetric.
We therefore drive the void expansion by prescribing pure
dilatational displacements over the exterior boundary of
the computational cell. Thus, if � is the nominal axial
strain imparted on the sample, we increase � steadily
from � � 0 to � � 10:5% by 0.1% increments. At each
loading step, a new stable equilibrium configuration is
obtained by using the Polak-Ribiere variant of the con-
jugate gradient algorithm [14]. The computational mesh
is then adapted so as to ensure full atomistic resolution
locally well in advance of the passage of dislocations. In
order to reliably identify the defects in the crystal we
employ the centrosymmetry deviation parameter [15].
For a partial dislocation core atom in Al the deviation
parameter is 2:1 
A2, between 5 and 20 
A2 for a stacking
fault, and 24:4 
A2 for a f111g free surface. In all subse-
quent dislocation structure plots, atoms are colored ac-
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cording to the relative magnitude of their centrosymme-
try deviation parameter with blue and red corresponding
to free surfaces and partial dislocation cores, respectively,
while atoms belonging to stacking faults are identified by
means of a green-to-orange color gradation.

The computed pressure vs volumetric strain (p-"v) and
normalized void growth (�Vv-"v) curves are plotted in
Fig. 1. The pressure p is calculated from the external
tractions acting on the boundary of the computational
domain. We define the volumetric strain as "v �
�1� �	3 
 1. Finally, �Vv=Vv0 denotes the void volume
increment with respect to the initial void volume of
�72:9 nm3.

Three main stages of rapid pressure buildup punctuated
by inflection or yield points are clearly discernible in the
�p-"v	 curve in Fig. 1: (i) an initial elastic stage up to the
first yield point at "v � 17:2%, characterized by elastic
expansion of the void without dislocation emission; (ii) a
second stage of hardening up to a second yield point at
"v � 30:8%, characterized by the formation of highly
stable tetrahedral dislocation structures around the sur-
face of the void; and (iii) a third stage of hardening
characterized by the emission of a burst of dislocations
from the void. Dislocation emission episodes result in
sharp growth spurts of the void. However, these local
instabilities are confined by the surrounding elastic ma-
trix and, in particular, the average pressure in the cell
exhibits no drops. We refer to the various stages of defor-
mation as stages I, II, and III, respectively, for ease of
reference.We proceed to describe the deformation mecha-
nisms underlying these stages.

The first dislocation structures emerge immediately
following the first yield point at a pressure of 19.2 GPa,
FIG. 1 (color). Computed hydrostatic pressure and normal-
ized void volume expansion �Vv=Vv0 vs volumetric deforma-
tion "v of the sample. Three main regimes, separated by two
yield points, can be distinguished in the curve, namely, an
elastic regime, lock hardening, and work hardening.
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which thus may be regarded as the critical pressure for the
inception of plastic cavitation. The computed cavitation
pressure of 19.2 GPa is in good agreement with experi-
mentally measured values [3], results of first-principles
calculations [16], and Grady’s [17] formula for the theo-
retical spall strength, which gives a value of 18.2 GPa.

The dislocation structures that form immediately after
the first yield point are shown in Fig. 2. A set of tetrahe-
dral dislocation junctions symmetrically distributed on
all six h100i apices of the void can be clearly discerned in
the figure. A detailed analysis of the dislocation struc-
tures reveals sets of four tetrahedra converging at a single
point. The tetrahedra are composed of f111g stacking-
fault surfaces bounded, alternatively, by 1

6 h110i stair-rod-
type sessile dislocations and 1

2 h110i perfect dislocations.
These fourfold assemblies of stacking-fault tetrahedra
are seen to form exceptionally strong junctions, similar
to the threefold-symmetric dislocation structures found
previously in atomistic simulations of Al nanoindentation
[18]. Indeed, the formation of extended stacking-fault
nodes is a well-documented phenomenon in fcc metals
(cf. [19]).

The stair-rod dislocation structures can be attributed to
the Lomer-Cottrell reaction, in which two perfect dislo-
cations split into partials react along the intersection line
FIG. 2 (color). [010] view of the dislocation structures gen-
erated at the first yield point. The four tetrahedra have one
common vertex at which the sum of Burgers vectors of the
converging stair rod and perfect dislocations is conserved. A
schematic diagram showing the four tetrahedra and the
Burgers vectors (in Thompson’s notation) corresponding to
all dislocation junctions is provided in the inset.
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of their respective f111g glide planes to form a sessile
junction. More specifically,

1
2 �101
 �

1
2�01

�1
 ! 1
6�112
 �

1
6�11

�2
 � 1
6�110
; (1)

DA� AC ! D
� �C� 
�; (2)

where the first two product dislocations are Shockley
partials and the last one is the stair rod. The stair-rod
dislocation exerts a repulsive force on the two remaining
partials. These, in turn, recombine with the two repulsed
partials of the adjacent tetrahedra to form perfect dis-
locations. These so-called Lomer-Cottrell junctions act as
strong barriers to further glide on the two f111g planes
involved and remain locked for as long as the two trailing
partials of the converging dislocations remain on separate
planes.

The formation of highly stable tetrahedral locks tem-
porarily inhibits further dislocation activity and the ini-
tial yield point is followed by a second stage of rapid
pressure buildup (stage II). During this lock-hardening
stage, the �p-"v	 curve grows monotonically. Eventually,
at a pressure of approximately 29 GPa the tetrahedral
structures lose stability and a burst of dislocation emis-
sion takes place. The emitted dislocations rapidly expand
into the surrounding matrix, resulting in a second void
growth spurt of �9%. The observed dislocation distribu-
tion is qualitatively similar to that predicted by Lubarda
et al. in their analytical study of void growth [5].

The swift and unrestricted expansion of the glissile
loops requires that the atomistic region surrounding the
void grow accordingly in order to avoid numerical arti-
facts. This growth is illustrated in Fig. 3, where the QC
mesh at 30.8% volumetric strain is shown. The corre-
sponding dislocation structures are shown in Fig. 4.
FIG. 3 (color). View of the QC computational mesh (cut
through x � 0) shortly after the second yield point ("v �
30:8%). The figure is color-coded according to the magnitude
of the displacements perpendicular to the plane of the cut.
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Interestingly, in addition to the 1
2 h110if111g-type disloca-

tions expected in fcc metals, large, petal-like shear loops
of 1

2 h110if001g character can be clearly observed in the
figure. Slip on f100g planes, although uncommon in close-
packed metals, has been reported for Al [20,21] and
postulated theoretically by Cottrell and others [22,23].
Thus, the reaction

1
6 �112
 �

1
6�11

�2
 � 1
6�110
 !

1
2�110
; (3)

D
� �C� 
� ! DC (4)

is common in metals with high stacking-fault energy
such as Al. The two trailing partials of Eq. (1) can further
collapse upon the stair-rod dislocation and give rise to a
perfect 1

2 �110
 dislocation capable of gliding on
�001	-type planes. The classical explanation for this be-
havior (cf. [20]) is based on the assumption that the split
Lomer-Cottrell dislocation has to recombine over a cer-
tain segment length and form a total dislocation which
bows out on a f100g plane, giving rise to growing loops.
Because of the repulsive nature of the three reactant
dislocations in reaction (3), this can be achieved only
by increasing the level of applied stress, which is reflected
in the �p-"v	 evolution corresponding to stage II. Notably,
the 1

2 h110i dislocation glide on f100g planes has also been
observed at moderate stresses in materials with stacking-
fault energies well below that of Al [20]. Our analysis of
the dislocation structures further suggests that during the
FIG. 4 (color). Dislocation structures at "v � 30:8%. The
activated slip systems include the conventional 1

2 h110if111g
(type A) and the anomalous 1

2 h110if001g (type B).
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FIG. 5 (color). Final detachment of the 1
2 h110if001g disloca-

tions corresponding to a dilatation of 34.5%.
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breakdown of the Lomer-Cottrell locks the locking points
remain fixed, effectively pinning the loops. The disloca-
tion loops initially grow without detaching from the void,
and they leave a shear plate behind. We attribute the
temporary presence of this unstable shear plate to the
very high stresses present inside the sample.

Upon increased loading, the dislocation ensemble
grows steadily and the size of the void increases. The
shear stress in our sample decreases rapidly away from
the void surface, as �1=r2. This explains why the loops
reach their maximum size at a distance of about 5–7 nm
from the void, which is when the shear stress falls below
the critical glide stress on f001g planes. The hardening
observed in the �p-"v	 curve is lost at pressures of about
29 GPa, and p can be seen to soften progressively up to
"v � 34:5%. The dislocation activity around the void
becomes exceedingly complex due to the juxtaposition
of existing structures and the nucleation of new ones. The
1
2 f110g shear loops are eventually observed to detach and
the extended fault plates to dissolve (cf. Fig. 5). Following
this stage, the growth of the loops slows down again and a
new hardening stage sets in.

In conclusion, we have studied the transition paths
attendant to nanovoid growth in Al. Our analysis reveals
several stages of pressure buildup separated by yield
points. The first yield point corresponds to the formation
of highly stable tetrahedral dislocation junctions around
the boundary of the void. The tetrahedral structures are
165503-4
bounded by stacking-fault surfaces, stair-rod disloca-
tions, and perfect dislocations. The second yield point is
caused by the dissolution of the tetrahedral structures and
the emission of conventional ( 1

2 h110if111g) and anoma-
lous ( 12 h110if001g) dislocation loops. To the best of
knowledge, these deformation mechanisms had not pre-
viously been observed in atomistic simulations of expand-
ing voids. Our analysis suggests that the initial stages of
expansion of a nanovoid in Al under pressure are the
result of a number of highly complex transitions that
negotiate an exceedingly rugged energy landscape.
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