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Quasiscarred Resonances in a Spiral-Shaped Microcavity
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We study resonance patterns of a spiral-shaped dielectric microcavity with chaotic ray dynamics.
Many resonance patterns of this microcavity, with refractive indices n � 2 and 3, exhibit strong
localization of simple geometric shape, and we call them quasiscarred resonances in the sense that
there is, unlike conventional scarring, no underlying periodic orbits. It is shown that the formation of a
quasiscarred pattern can be understood in terms of ray dynamical probability distributions and wave
properties like uncertainty and interference.
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The scar phenomenon, since its advent in a chaotic
billiard, has attracted much attention [1], because it had
not been anticipated from the prevailed random matrix
theory [2]. It is now known that the scarred eigenfunc-
tions show not only strong enhancement along a unstable
periodic orbit, but also detail of the stable and unstable
manifolds around the periodic orbit [3]. This scar effect
therefore has been regarded as an important feature of
chaotic systems different from random systems. Another
important aspect of the scarring effect is its ubiquitous
existence; it has been observed in various chaotic systems
such as microwave cavities [4], semiconductor quantum-
wells [5], surface waves [6], optical cavities [7,8], etc.

Recently there is considerable interest in the light
emission from dielectric cavities with chaotic ray dynam-
ics, since many intriguing light emission behaviors take
place and are known to be relevant to the underlying
chaotic ray dynamics [9]. There are several reports of
observation of scarred lasing modes in dielectric micro-
cavities of various boundary shapes [7,8,10]. The scarred
lasing modes generally show good directionality of light
emission, and the directionality is an important charac-
teristic required for applications to photonic and opto-
electric information processing [11]. The number of
directional beams of the scarred emission from usual
microcavities would be more than two because of the
discrete symmetry of the cavity and the possibility of
interchanging incident and reflected rays.

In a remarkable experiment, Chern et al. have success-
fully observed unidirectional emission in spiral-shaped
quantum-well microlasers [12]. The unidirectional laser
beam is important to arrange easy optical communica-
tion between microlasers. The spiral-shaped boundary, in
which ray dynamics is chaotic, is given by r��� � R�1�
�
2��� in polar coordinates (r, �), where R is the radius of
the spiral at � � 0 and � is the deformation parameter.
Basically, the unidirectionality of the emission beam
comes from the special properties of the spiral-shaped
boundary geometry which other common cavity designs
do not have, i.e., the absence of any symmetry and the
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existence of the notch. As mentioned above, the absence
of symmetry would be the necessary condition for the
unidirectional emission. The notch makes the microcav-
ity show very strong chirality by transmitting or reflect-
ing counterclockwise rotating rays, which would be an
essential process for the unidirectional emission. Besides
the unidirectionality, it is important and interesting to
study how the unique characteristics of the spiral-shaped
microcavity appear on resonance patterns.

In this Letter, we investigate the resonance patterns in
the spiral-shaped dielectric microcavity. We find that a
large number of resonances obtained are strongly local-
ized and that the localized patterns are not supported by
any unstable periodic orbit, so we call them quasiscarred
resonances. The existence of quasiscarred resonances
implies that the scarring phenomenon in dielectric micro-
cavities has substantial differences from the conventional
scarring in billiard systems. The differences come from
inherent characteristics of dielectric cavities such as the
existence of the critical incident angle for total internal
reflection and energy loss by refractive emission. We ex-
plain the formation of the quasiscarred resonances in
terms of ray dynamical probability distributions and
wave properties like uncertainty and interference. For
convenience, we take � � 0:1 and R � 1 in this Letter.

In order to investigate the ray dynamical properties, we
first consider a uniform ensemble of initial points over the
whole phase space �s; p�, where s is the boundary arc
length from the � � 0 point (see Fig. 4) and its conjugate
variable p is given as p � sin�, � being the incident angle
of ray. If the boundary is made by a perfect mirror, the
distribution of the points in the phase space at later times
would remain uniform (in a random sense) and structure-
less. However, in the dielectric microcavity, the distribu-
tion of the points is, some time later, not uniform but
rather structural because the individual ray can suffer
energy loss by refractive emission when bouncing from
the boundary. The amount of the energy loss is deter-
mined by the transmission coefficient T �p� [13], which
has a nonzero value in the range of �pc < p < pc, where
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pc is the critical line for total internal reflection and is
related to the refractive index n as pc � sin�c � 1=n, �c
being the corresponding critical incident angle. This
leaky property of rays in the ensemble is described by
the survival probability distribution ~P�s; p; t�, the proba-
bility with which the ray with �s; p� can survive in the
microcavity at a time t.With the ~P�s; p; t�, the energy E�t�
confined in the microcavity and the escape time distribu-
tion Pes�t� are expressed as E�t� � E0

R
dsdp ~P�s; p; t�, E0

being the initial energy, and Pes�t� �
R
dsdp ~P�s; p; t� �

T �p�, respectively. Since the E�t� decreases by the ray
transmission through cavity boundary, we can get a
relation,

dE�t�
dt

� �E0Pes�t�: (1)

It is well known that in fully chaotic open systems the
escape time distribution Pes�t� shows exponential long
time behavior, while it becomes power law decay in the
Kolmogorov-Arnold-Moser systems due to the stickiness
of the Kolmogorov-Arnold-Moser tori [14]. The expo-
nential behavior of Pes�t� suggests that ~P�s; p; t� would
have the same phase space distribution after a certain
period of time, i.e.,

~P�s; p; t� � B�t�Ps�s; p�; (2)

which defines the steady probability distribution Ps�s; p�
as the stationary part of ~P�s; p; t�. It is obvious from
Eq. (1) that the relation in Eq. (2) is equivalent to assum-
ing the exponential time behaviors of ray dynamical
distributions such as E�t�, ~P�s; p; t�, and Pes�t�. For the
present microcavity, a numerical justification of the rela-
tion in Eq. (2) will be presented below (see Fig. 1). The
Ps�s; p� then characterizes the ray dynamical long time
behavior. The decay rate �, from Eq. (1), can be expressed
as � �

R
dsdpPs�s; p�T �p�, and the ray dynamical near

field and far field distributions can be also described by
Ps�s; p�.
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FIG. 1. The escape time distributions Pes�t� with n � 2 for
two sets of initial points; the thick and thin lines represent
numerical results for sets A and B, respectively. The time t is
scaled to be the length of ray trajectory when R � 1.
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For simplicity, we concentrate on transverse magnetic
polarization. In Fig. 1, the escape time distributions Pes�t�
are shown for the n � 2 case. Here, we consider two
different sets of 400� 400 initial points: one is the uni-
formly distributed set over the whole phase space (set A)
and the other is the uniformly distributed one in a part of
the phase space, �0< s< smax

2 ; 0:5< p< 0:75� (set B),
where smax is the total length of the boundary. Note that
above tc ’ 30 exponential decay behaviors are shown. The
slope of the linear part determines the decay rate �. The
similar slopes for both sets reflect that rays lose their
energy through the same process. The details of the
process appear in the structure of Ps�s; p�.

Figure 2(a) shows an approximate Ps�s; p� for n � 2
given by normalizing the ~P�s; p; t� in the time range of
57< t < 60 for set A. The structure of the approximate
Ps�s; p� is almost invariant in other time ranges of the
linear part �t > tc� and even for set B. It is clear that the
energy loss was mainly caused by tangential emissions
just above the critical line ( � pc � �1=2). So, we can
see that the process mentioned above is the way that the
ray trajectories first rotate counterclockwise (p > pc),
then change their rotational direction by reflection on
the notch part, and afterwards gradually approach �pc.
Most of them are then emitted out from the microcavity
and the remains repeat the same process. The distribution
confined to the negative value of p means strong chirality
of this spiral-shaped microcavity. The dark tentacular
structure in Fig. 2(a) implies the missing trajectories
which are reflected at the notch with jpj> pc. In fact,
the overall structure presents a part of unstable mani-
folds, which is typical in open chaotic systems [14]. This
structure would give important information about statis-
tical properties of resonances, i.e., far field and near field
distribution of resonances would show minima at values
corresponding to the missing trajectories.

More direct implication on resonance patterns can
arise from the distribution of resulting distance
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FIG. 2. (a) The normalized ~P�s; p; t� sampled in the time
range of 57< t < 60 for set A. The white dots represent points
whose weight is greater than 0:1 after normalization. (b) The
distance, resulting after three bounces, distribution d�s; p�.
Comparing both figures, it is clear that the partially reflected
rays near �pc make rough triangular trajectories.
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after three bounces [Fig. 2(b)], i.e., d�s;p��������������������������������������������
�sf�s�

2��pf�p�
2

q
where �s; p� is the initial position

and �sf; pf� being the position after three bounces. We
note that in Fig. 2(b) the critical line p � �pc lies on the
region of lower d values. Since the rays in the region just
above �pc are partially emitted out, the remaining re-
flected rays would make a rough triangle. As discussed
below, the imprint of this fact appears apparently in
resonance patterns [see Fig. 3(a)]. Although the n � 3
case is not presented in the figures, the distance distribu-
tion after five bounces also shows similar features, im-
plying that the star shape ray trajectories would be
responsible for resonance patterns [see Fig. 3(b)].

Using the boundary element method [15], we obtain
resonances around Re�nkR� ’ 110 for the spiral-shaped
dielectric microcavity, 24 resonances for n � 2 and 23
resonances for n � 3, which are about 25% of the total
number of resonances in the concerned range. From the
resonances we realize an important fact that the basic
localized structures of the resonance patterns are trian-
gular and star shapes for n � 2 and 3, respectively, which
is consistent with the implication of Ps�s; p�. The nkR
values and patterns for whole resonances will be pre-
sented elsewhere due to lack of space.

The most clearly localized resonances for n � 2 and 3
are shown in Fig. 3. The patterns look like strongly
scarred resonances, but there is no exact underlying un-
stable periodic orbit. Absence of periodic orbits of simple
geometry, without bouncing at notch, e.g., triangle and
star, is evident by numerical evaluation of �p � pi � pf
for a closed triangle or star trajectory starting from
�si; pi� and terminating at �si; pf�. We obtain j�pj>�
for arbitrary si value, where � � 0:075 for the triangle
trajectory and � � 0:136 for the star trajectory.
Moreover, nonexistence of periodic orbits of simple ge-
FIG. 3 (color). Field intensity plots of quasiscarred reso-
nances in the spiral-shaped microcavity. (a) n � 2 and nkR �
�109:70;�0:1128�. (b) n � 3 and nkR � �109:59;�0:1127�. In
figures, the field intensity is normalized by scaling the maxi-
mum intensity as one.
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ometry can be understood if one knows that for the
clockwise rotating case the distance between the origin
and the ray segment always decreases as far as the ray
bounces at the curved part of the boundary. Since the
localized patterns of resonances are not supported by any
unstable periodic orbit, we call them quasiscarred reso-
nances. The existence of quasiscarred resonances in di-
electric cavities can be understood from the inherent
property of open systems, i.e., uncertainty characteristics.
Another important result from the resonance pattern
analysis is that many resonances are quasiscarred, e.g.,
in the present case more than a half are quasiscarred,
while only a small fraction of eigenfunctions are scarred
in billiard systems. Therefore, the dominant existence of
quasiscarred resonances can be regarded as a result of the
openness of microcavities. In open systems, rather local
parts of phase space would support resonances [e.g., see
Fig. 2(a)] and the resulting individual resonance would
show a strong localization whose pattern might be deter-
mined by the property of the openness. This is consistent
with results, associated with scarred resonances, in vari-
ous open systems [6,16].

Now, we consider bouncing positions of the triangle
formed in quasiscarred resonances which seem to have a
definite dependence on their Re�nkR� values. We assume
that the triangle in quasiscarred resonances has minimum
deviation from the ray trajectory governed by Snell’s law,
and maximum constructive interference under constraint
of high intensity of the electric field at the bouncing
positions. We quantify these by two factors, � and �, as
follows. Let si (i � 1, 2, 3) be the bouncing positions of a
triangle, and from the angles (�ij; �ik) to the normal line
on the boundary, we can define pij � sin��ij�, pik �

sin��ik�, and pi � sin�
�ij��ik

2 � (here i, j, k are cyclic).
Also we get the new positions sij; sik as the next positions
of �si; pi� and �si;�pi�, respectively, (see Fig. 4). Then we
define partial uncertainty of the triangle given by
�s1; s2; s3� as

�i � 	�pi � pij��sj � sij�
2 � 	�pi � pik��sk � sik�
2:

(3)

Total uncertainty, therefore, is the sum of these terms,
FIG. 4. Schematic diagram for quantifying the degree of
uncertainty. The trajectory satisfying Snell’s law, with an
incident angle ��12 ��13�=2, is denoted by dashed lines.
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FIG. 5. Variation of the optimized bouncing positions
(s�1; s

�
2; s

�
3). The solid lines denote the present theory with a

correction ! � 0:16. The circles represent the bouncing posi-
tions of triangular quasiscarred resonance patterns of n � 2
case; three solid circles with the same Re�nkR� correspond to
the main triangular pattern, and three open circles to the
secondary triangular pattern in a quasiscarred resonance.
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� �
P3
i�1 �i. By definition, when the triangle is a peri-

odic orbit, � becomes zero. To quantify the degree of
constructive interference we consider mi � �i �
li=��=2� � ��=� for each triangle segment of length li,
where mi is an integer and �0:5<�i < 0:5, � �
2�=�nk�, and �� is the phase shift arisen from total
internal reflection [17]. Total quantity for the degree of
constructive interference is then � �

P3
i�1 �

2
i with an

additional constraint that the sum M �
P3
i�1mi should

be even.
We first determine triangles with minimum uncer-

tainty � as a function of s1, and then apply the condition
of minimum � to the triangles. From this process we get
the most optimized triangle of (s�1; s

�
2; s

�
3) for a fixed

Re�nkR�. The direct application of this method shows
systematic deviation from bouncing positions of reso-
nance patterns. This systematic discrepancy results from
the fact that rays inside a microcavity have angular dis-
tributions and the boundary also has curvatures, which
gives rise to a correction of Snell’s law. This effect is
prominent near the critical angle �c, studied and known
as Goos-Hänchen [18] and Fresnel Filtering effects
[8,19]. We here incorporate these effects by taking effec-
tive segment length l�i � li �!�. The results are shown
in Fig. 5. The solid lines are results of the present theory
with ! � 0:16, which are in good agreement with the
bouncing positions (denoted by circles) of the quasi-
scarred resonances. Absence of bouncing positions near
s � 2:0 and s � 4:5 is consistent with the tentacular
structure of the approximate Ps�s; p� in Fig. 2(a).
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In conclusion, we have found that the localized patterns
of resonances in a spiral-shaped dielectric microcavity
are constructed by the quasiscar phenomenon which
comes from inherent properties of the dielectric micro-
cavity, and that a large fraction of the resonances are
quasiscarred. The results are contrasted with the case of
billiard systems in which only scar phenomenon exists,
and a small fraction of eigenfunctions are scarred. Even
though the system is chaotic, it is possible to extract some
information on resonance patterns from the ray dynami-
cal consideration, more precisely, from the steady proba-
bility distribution Ps�s; p�. Since Ps�s; p� contains long
lasting ray dynamical information, its structure should be
related to the high-Q resonances which are likely to
appear as lasing modes. We expect that the results of
this Letter will improve physical insight onto resonance
patterns in generic microcavities.
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