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Gravity-Sensitive Quantum Dynamics in Cold Atoms
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We subject a falling cloud of cold cesium atoms to periodic kicks from a sinusoidal potential created
by a vertical standing wave of laser light. By controllably accelerating the potential, we show quantum
accelerator mode dynamics to be highly sensitive to the effective gravitational acceleration when close
to specific, resonant values. This quantum sensitivity to a control parameter is reminiscent of that
associated with classical chaos and promises techniques for precision measurement.
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The identification and observation of signatures of
chaos in quantum dynamics is the goal of considerable
current effort. Much of this work centers on the theoreti-
cal characterization of energy spectra [1], or such quan-
tities as the Loschmidt echo [2] and fidelity [3], which
develop the idea that sensitivity of a wave function’s
evolution to small variations in a system’s Hamiltonian
be used as a definition of quantum instability [1–4]. Such
quantities could be observed experimentally but require
some interpretation to highlight the way in which their
nature betokens stability or chaos. An alternative would
be the observation of different motional regimes. This is
more in sympathy with techniques and philosophy used
to identify classical chaos and is the approach used here.

In certain systems the decay of the overlap of two
initially identical wave functions evolving under slightly
differing Hamiltonians can be expressed in the long time
limit as the sum of two decays, governed by Fermi’s
golden rule and the classical Lyapunov exponent [2].
The decay rate serves as a quantum signature of insta-
bility, which can be compared with that of the corre-
sponding classical system. Such sensitivity can be probed
interferometrically [5,6]. In the quantum system pre-
sented here, the classical limit of which is chaotic, ex-
treme sensitivity of the qualitative nature of the motional
dynamics to a control parameter is directly observable. It
is manifested by the effect on quantum accelerator mode
(QAM) dynamics [6–10] of small variations in the effec-
tive value of gravity in the �-kicked accelerator [7,11]. The
QAMs observed in this atom-optical realization [6–10]
are characterized by a momentum transfer, linear with
kick number, to a substantial fraction (up to �20%) of the
initial cloud of atoms. This is due to a resonant rephasing
effect, dependent on the time-interval between kicks, for
certain wave functions [9,12]. The sensitivity in the dy-
namics we observe also promises the capability of pre-
cisely calibrating a relationship between the local
gravitational acceleration and h=m, wherem is the atomic
mass, and we describe how our observations constitute a
feasibility demonstration of such a measurement.
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The Hamiltonian of the �-kicked accelerator, realized
using a magneto-optic trap (MOT) of laser-cooled atoms
that are then released and subjected to pulses from a
standing wave of off-resonant light, is

Ĥ �
p̂2

2m
�mgẑ� �h	d�1� cos�Gẑ��

X1
n��1

��t� nT�;
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where ẑ is the position, p̂ is the momentum, m is the
particle mass, t is the time, T is the pulse period, �h	d
quantifies the strength of the kicking potential, G �

2�=�spat, and �spat is the spatial period of the standing
wave applied to the atoms. The quantity g is normally the
gravitational acceleration; by ‘‘accelerating’’ the standing
wave, it is possible to effectively modify g [7,13].

In an analysis by Fishman, Guarneri, and Rebuzzini
[12], the fact that QAMs are observed only when T
approaches ‘T1=2 � ‘2�m= �hG2, where ‘ 2 Z� and T1=2
is the half-Talbot time [9], is exploited to yield a simpli-
fied picture of QAM dynamics. In a frame accelerating
with g, the linear potential is removed to leave a spatially
periodic Hamiltonian. The quasimomentum � is then
conserved, i.e., if a momentum state jpi � j�k� �� �hGi,
where k 2 Z and � 2 �0; 1�, ‘‘ladders’’ of momentum
states of different � evolve independently. The resulting
kick-to-kick time evolution operator is

F̂n��� � exp��if�̂� sgn�����‘� k-�

���n� 1=2��g2=2�� exp�i~k cos�̂=j�j�; (2)

where ~k � j�j	d, k- � 2�T=T1=2, and � � gGT2. We
have introduced � � 2��T=T1=2 � ‘� to quantify the
closeness of T to ‘T1=2 and the dynamical variables are
now an angle �̂ � Gẑ and a discrete conjugate momentum
�̂ � j�j�p̂= �hG� ��, such that ��̂; �̂� � ij�j. If one con-
structs a kick-to-kick Heisenberg map corresponding to
Eq. (2) for the dynamical variables, then in the limit �!
0, the commutator vanishes, and the operators can be
replaced by their mean values. Thus
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FIG. 1. Phase-space plots for Eq. (3), when 2��=k- 2 � 1=1 )
� � �2�� ��2=2�, and ~k � j�j0:8� for � � �0:88 (a),
�0:02 (b), 0.03 (c), and 0.6 (d). This corresponds to T �
57:4, 66.5, 67, and 73 #s. For (a),(b) the island corresponds
to a �p; j� � �1; 1� QAM, and for (c),(d), to a �p; j� � �1;�1�
QAM.
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~�n�1 � ~�n � ~k sin��n� � sgn����; (3a)

�n�1 � �n � sgn���~�n�1; (3b)

where �n � h�̂ni, ~�n � h�̂ni � sgn��‘� k-�� ��n�
1=2��. Quantum accelerator modes correspond to stable
periodic orbits of this map [6,8,12]. Note that �! 0
coincides with �h! 0 only if ‘ � 0. Otherwise, as here,
the classical-particle-like behavior of QAMs is due to a
quantum resonance effect.

Stable periodic orbits yielded by Eq. (3) (and hence
QAMs) are classified by order p and jumping index j (the
number of momentum units, in terms of the size of the
phase-space cell, traversed after p iterations). The sign of
j is determined by the jumping direction. A necessary
condition [12] for the existence of a periodic orbit is
jj=p � sgn����=2�j � ~k=2�, which can be rewritten
(for small �) as
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Both 	d and �=k- 2 � gm2= �h2G3 are independent of T,
and therefore of �. Equation (4) is convenient when T is
varied from below to above ‘T1=2, i.e., scanning � from
negative to positive. As �! 0, the QAMs that occur
must be characterized by j and p such that j=p !
�sgn���2�‘2�=k- 2. In general 2�‘2�=k- 2 is an irrational
value, and one observes increasingly high-order QAMs as
T ! ‘T1=2 [8]. If we tune g so that 2�‘2�=k- 2 � r=s,
where r and s are integers, then j=p � sgn���2�‘2�=k- 2 �
0 for j=p � �sgn���r=s. Once the �p; j� QAM satisfying
this condition appears, shifting T closer to ‘T1=2 does not
produce higher-order QAMs.

In a frame accelerating with g, the momentum after N
kicks, for an initial condition near a �p; j� stable periodic
orbit [12], in ‘‘grating recoils’’ �hG [9] is

qN ’ q0 � N
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�
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�
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where q0 is the initial momentum. We now consider the
momentum of orbits specified by j=p � r=s (for � < 0)
and j=p � �r=s (for � > 0) as a single function of N and
�, when 2�‘2�=k- 2 approaches rational values. Letting
2�‘2�=k- 2 � r=s� w‘2, we find
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Scanning through � from negative to positive values, one
does not generally observe two QAMs of the same p and
magnitude of j (with positive sign for negative �, and
negative sign for positive �) [8,14]. However, in the
gravity-resonant cases we consider, when 2�‘2�=k- 2 is
close to r=s, we always observe an r=s and then a �r=s
QAM as we scan �. This is shown in Fig. 1, where we plot
164101-2
Poincaré sections produced by Eq. (3) for � � k- 2=2� �

�2�� ��2=2� (i.e., r=s � 1) and ~k � j�j	d � j�j0:8�
(the approximate experimental mean value [7]). The is-
lands around the �p; j� � �1;�sgn���1� periodic orbits
remain large over a wide range of � and, in contrast to
Ref. [8], no higher-order island structures appear as �!
0. In Fig. 2(a) the corresponding QAMs are robust and
uninterrupted by higher-order QAMs as T ! T1=2.

From Eq. (6) we see that for a given N, q is a linear
function of � whenever w � 0. If w � 0 this changes to a
hyperbolic function, where the arms of the hyperbolas
point in opposite directions for oppositely signed w.
Deviation from straight line behavior in a QAM accel-
erated to a given momentum will be greater for a gravity-
resonant mode corresponding to smaller j=p � r=s, since
the QAM acceleration is / j=p, but the deviation is / N.
We consider only QAMs where j � r � 1, so high-order
modes exhibit, for a given momentum transfer, greater
sensitivity to variations in g.

In our realization of the quantum �-kicked accelerator,
�107 cesium atoms are trapped and cooled in a MOT to
5 #K, yielding a Gaussian momentum distribution of
FWHM 6 �hG. The atoms are then released and exposed
to periodic pulses from a laser standing wave 15 GHz red-
detuned from the 62S1=2!62P1=2 (F�4!F0 �3) D1
transition. Hence the spatial period of the standing wave
is �spat � 447 nm, and T1=2 � 66:7 #s. The peak stand-
ing wave intensity is ’ 5� 104 mW=cm2, and the pulse
duration is tp � 500 ns. This is sufficiently short that the
atoms are in the Raman-Nath regime and each pulse
164101-2



FIG. 2 (color online). Density plots of experimental momentum distributions for different effective gravity g corresponding to
(a) r=s � 1=1 (after 15 kicks), (b) r=s � 1=2 (30 kicks), (c) r=s � 1=3 (45 kicks), and (d) r=s � 1=4 (60 kicks), as T is varied near
the half-Talbot time T1=2 � 66:7 #s, from 60.5 to 74:5 #s in steps of 0:128 #s. In each case the QAM corresponds to j=p � r=s;
subplot (i) corresponds to w ’ �8:5� 10�4 (deviation from resonant g is �� 8:6� 10�2 ms�2), subplot (ii) to w ’ 0, and
subplot (iii) to w ’ 8:5� 10�4 (deviation from resonant g is �8:6� 10�2 ms�2). Overlaid lines, labeled (p; j), indicate QAM
momenta predicted by Eq. (6). Population arbitrarily normalized to maximum value � 1, and momentum defined in a frame falling
with g. Note the significantly greater population at high momentum (up to 50 �hG) near T1=2 in (d)(i) and (d)(iii), compared to (a)(i)
and (a)(iii).
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approximates a �-function kick. The potential depth is
quantified by 	d � �2tp=8�L, where � is the Rabi fre-
quency and �L is the detuning from the D1 transition.
During the pulse sequence, a voltage-controlled crystal
phase modulator stroboscopically accelerates the standing
wave profile. The atoms therefore effectively experience a
controllable value of gravity. After the pulsing sequence,
the atoms fall through laser light resonant with the
62S1=2 ! 62P3=2 �F � 4 ! F00 � 5� D2 transition, 0.5 m
below the MOT. By monitoring the absorption, the atoms’
momentum distribution is then measured by time of
flight, with resolution �hG [7,9].
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In Fig. 2 we show momentum distributions for experi-
ments in which T was scanned across T1=2 from 60.5 to
74:5 #s, with 2��=k- 2 varied in the vicinity of r=s equal
to (a) 1=1, (b) 1=2, (c) 1=3, and (d) 1=4. To maintain the
ideal (w � 0) total momentum transfer, 15, 30, 45, and
60 kicks were applied fixing Nr=s. For each of Figs. 2(a)–
2(d) the data displayed are in subplot (ii), 2��=k- 2 � r=s
(as exactly as feasible), yielding a linear variation of the
QAM momentum with T; and in subplots (i) and (iii), for
equal positive and negative deviations from this near-
ideality, yielding hyperbolic variation of the QAM mo-
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mentum. Typically �10%–20% of the atoms populate the
QAM.

In each subplot (ii) of Fig. 2, the QAM momentum
predicted by Eq. (6) is identical. The expected linear
dependence on T appears to be well confirmed by the
data, although the separation of the QAM from the non-
accelerated cloud, centered at p � 0, is clearer for smaller
s � p (there is less momentum diffusion for fewer kicks).
In Fig. 2(a), subplots (i) and (iii) are barely distinguish-
able from subplot (ii), whereas in Fig. 2(d), the distribu-
tions in subplots (i) and (iii) are highly asymmetric
compared with subplot (ii), with, close to T1=2, noticeable
population at up to 50 �hG. The asymmetry inverts from
below [subplot (i)] to above [subplot (iii)] the resonant
value of gravity. We therefore observe a clear qualitative
change in the QAM dynamics, highly sensitive to a
control parameter. The displayed predictions of Eq. (6)
show that deviations from linear behavior occur only
when very close to T1=2 in Figs. 2(a)(i) and 2(a)(iii), but
are much more significant in Figs. 2(d)(i) and 2(d)(iii).
This is due to the larger number of kicks necessary for
large s � p to achieve the same QAM momentum.

The procedure of determining the ‘‘standing wave
acceleration’’ at which straight line behavior of a given
�p; j� QAM momentum is observed as a function of T
could, in principle, be used as a sensitive atom-optical
means of relating h=m [15] to the local gravitational
acceleration [16]. This is because 2��=k- 2 � r=s can be
rewritten g � �h=m�2�r=s�=�3spat and would be deter-
mined by noting when the total acceleration (sinusoidal
potential plus gravitational) causes these equalities to be
fulfilled for a known r=s, and then subtracting the im-
posed acceleration of the potential. In our setup, where
the potential is ‘‘accelerated’’ by using a crystal phase
modulator to phase shift the retroreflected laser beam
[7,9], the phase shift for a particular applied voltage is
difficult to calibrate more precisely than �1%. This
limits the precision in measuring the relationship be-
tween the local gravitational acceleration and h=m to
�1%. An accurate prediction of the QAM momenta for
imperfectly resonant values of the effective gravity, as
displayed in Fig. 2, is also hampered. This could be
improved if the moving sinusoidal potential were formed
by two counterpropagating beams with a controllable
frequency difference [17], where calibration of the phase
shift to between 1 ppm and 1 ppb is possible. Calibration
of �spat to less than 1 ppb is also feasible [16], allowing for
the possible sensitive determination of either the local
gravitational acceleration [16] or h=m [15], depending on
which is initially known more precisely. The feasibility of
any such scheme will depend on how precisely the atomic
ensemble’s dynamics permit the determination of the
acceleration of the sinusoidal potential for which the
resonant, linear with T, behavior of the QAM occurs.
Ascertaining this will require substantial theoretical
and experimental investigation.
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We have observed qualitative changes in the motional
quantum dynamics of cold cesium atoms, highly sensitive
to the precise value of an externally adjustable parameter,
the effective gravity. This is distinct from conceptually
related proposals that consider slightly differing Hamil-
tonians to study the Loschmidt echo or fidelity and
demonstrates a link to the concepts of highly sensitive
dynamics in classically chaotic systems. We have de-
scribed a feasible experimental scheme taking advantage
of this sensitivity to determine a relationship between the
local gravitational acceleration and h=m.
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