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We show that modulational instability may arise even in the normal group-velocity dispersion regime
of an optical fiber when the fiber loss (gain) varies depending on the wavelength. A simple analytical
expression for the instability gain is obtained, which reveals that the odd-order terms of the loss
dispersion are responsible for this phenomenon. The instability gain is measured experimentally in an
optical-parametric-amplification configuration. Large parametric gain is induced in a non-phase-
matched regime as we apply narrow band loss at the idler wavelength.
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Modulational instability (MI) is a general feature of
wave propagation in dispersive nonlinear media and is
exhibited in such diverse fields as fluid dynamics [1],
plasmas [2], and nonlinear optics [3–5]. In particular,
MI has been widely studied in the context of optical fibers
[4,5], which provide pure one-dimensional and fairly
stable environments for the observation of nonlinear op-
tics.When a strong continuous-wave (cw) light propagates
inside an optical fiber with weak perturbations,
amplitude-modulational (AM) perturbation converts to
the phase-modulational (PM) perturbation through the
optical Kerr effect, while the PM perturbation is trans-
ferred back to the AM perturbation by the group-velocity
dispersion (GVD). In the anomalous GVD regime, these
effects provide positive feedback, resulting in MI, i.e., the
exponential growth of the perturbations. MI can be ex-
plained alternatively as the process of optical-parametric
amplification (OPA), where the anomalous GVD is re-
quired to satisfy the phase-matching condition among the
pump carrier and two modulational sidebands [5]. In this
context, observation of MI in the normal-GVD regime has
been limited to special cases in which an extra phase shift
is provided by an additional copropagating pump mode
[6–11], by the higher-order GVD [12], or in a ring cavity
configuration [13,14].

In this Letter, we show that a novel type of MI occurs in
the normal-GVD regime when the fiber loss varies de-
pending on the wavelength. Unlike the standard scalar MI
in the anomalous GVD regime, the PM-to-AM conver-
sion of the pump perturbation is induced by the loss
dispersion instead of GVD. Assuming general profiles of
both the loss (or gain) and GVD, we obtain a simple
analytical expression for the MI gain, which indicates
the explicit conditions for inducing MI in the normal-
GVD regime. We then demonstrate direct observation of
the loss-induced MI in an OPA configuration. Significant
enhancement of the OPA gain is observed in a non-phase-
matched regime of a fiber as we induce narrow band
distributed loss at the idler wavelength.
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In fact, the closely related phenomenon of Raman-
assisted OPA has been discovered by several authors
[15,16], in which the Raman resonance is proved to
enhance the OPA gain in a non-phase-matched regime.
In addition, the recent analytical work on MI in a rare-
earth-doped fiber amplifier claims that MI occurs in the
normal-GVD regime when the pump is placed at the slope
of the gain spectrum [17]. Our analysis reveals that the
wavelength-dependent gain, induced by either Raman
effect or rare-earth doping, is not necessarily required
but any odd-order (asymmetrical) loss dispersion in gen-
eral may cause MI in the normal-GVD regime.

In the linearized regime of MI, or equivalently, under
the undepleted-pump approximation of OPA, wave evolu-
tion along the fiber is described by the coupled-mode
equations [5]:
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where A0 is the slowly varying envelope of the pump
carrier, whereas A� and A� are those of the upper and
lower sidebands of the weak modulation, respectively.
� � 2
n2=�
Aeff� (n2 is the nonlinear refractive index,

 is the wavelength, and Aeff is the effective core area of
the fiber) is the nonlinear coefficient and �k �
k� � k� � 2k0 (kj are the propagation constants of re-
spective waves) denotes the linear phase mismatch. The
wavelength dependence of � is ignored in the case of our
interest. The additional terms �jAj=2 represent the ab-
sorption (�j > 0) or gain (�j < 0) experienced by respec-
tive waves. We assume �� 	 �� for simplicity.

From Eq. (1), A0 is solved as A0�z� �
������
P0

p
exp�i

Rz
0 �

�P�z0�dz0 � �0z=2�, where P�z� � P0 exp���0z� is the
local pump power. By introducing new variables
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Physically,  AM and  PM represent the AM and PM
components of the perturbation, respectively.
Equations (4) and (5) clearly reveal that the coupling
between the AM and PM perturbations occurs not only
through the GVD term �k=2, but also through the loss-
dispersion term i��� � ���=4.
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Under the lowest-order approximation of Wentzel-
Kramers-Brillouin expansion (valid when �P� �0)
[18], the solution to Eqs. (4) and (5) can be written as
 AM;PM �  AM0;PM0 exp�

Rz
0 �P�z

0���z0�dz0�. As a result,
we obtain the eigenvalue equation
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where we introduce d�z� � �k� � k� � 2k0�=2�P,
�odd�z� � ��� � ���=4�P, and �even�z� � ��� � �� �
2�0�=4�P. The normalized phase mismatch factor d is
proportional to the even-order GVD at the pump wave-
length, whereas �odd and �even are the normalized odd-
and even-order terms of the loss dispersion, respectively.
The eigenvalue � of Eq. (6) is solved as
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Finally, we obtain an analytical expression for the local
power gain G�z� of the two sidebands:

G � ��0 � 2�PRe��� � ��� � 2�Pf�; (10)

where f� � g� �odd. Since G � ��� for the lower
sideband in the absence of nonlinearity, 2�Pf� repre-
sents the additional MI gain experienced by the lower
sideband. Note that f� is determined uniquely by two
normalized parameters, d and�odd, which are responsible
for the PM-to-AM conversion of the perturbation in
Eq. (6).

Figure 1(a) shows the contour plot of f� calculated as a
function of d and �odd. The solid lines are the contour
lines on which f� � 0:1, 0.2, etc., while the dotted lines
indicate minor contour lines with every 0.02 interval.
When �odd � 0, f� is nonzero only within the range of
�2< d< 0 and takes the maximum value of 1 at
�d; �odd� � ��1; 0�. This corresponds to the standard sca-
lar MI in the anomalous GVD regime [4,5]. The note-
worthy feature in Fig. 1(a) is that when �odd > 0, f�
becomes positive for an arbitrary value of d, even in the
normal-GVD regime (d > 0). This clearly indicates the
existence of a novel type of MI induced by the odd-order
loss dispersion.

By solving the eigenmode ( AM0;  PM0) in Eq. (6), we
also calculate the sideband power ratio jA�j

2=jA�j
2 of the

MI eigenmode:
jA�j
2
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Figure 1(b) shows jA�j
2=jA�j

2 on the �d; �odd� plane.
While jA�j

2 � jA�j
2 in the usual MI regime (� 2< d<

0; �odd � 0), jA�j
2=jA�j

2 increases with �odd, implying
that the lower sideband grows dominantly for large �odd.
Such MI is similar to the single-sideband MI, which
emerges in the two-pump configuration [11]. This is also
consistent with the recent Letter on the Raman-assisted
OPA [16], where it is explained that the power imbalance
between two sidebands leads to the self-induced phase
matching.

The loss-induced MI gain is measured experimentally
in an OPA configuration; a small signal light is seeded at
the fiber input, which acts as an initial modulational
perturbation to the strong pump carrier. As a simple
example of odd-order loss- dispersion, large distributed
loss �i is induced at the idler wavelength as illustrated in
the inset of Fig. 2. Although the pump wave is placed in
the normal-GVD regime, we expect the signal wave to
grow exponentially by experiencing the loss-induced MI
gain as we increase �i. To realize the wavelength-
selective loss experimentally, we exploit stimulated
Brillouin scattering (SBS) inside the fiber. By injecting
a strong SBS pump light from the opposite end of the fiber
and redshifting its wavelength exactly by the Brillouin
163902-2
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FIG. 1. (a) Contour plot of the normalized MI gain for the
lower sideband f� calculated as a function of d and �odd. When
�odd � 0, f� is nonzero only in the anomalous GVD regime
(�2< d< 0). However, f� becomes positive in the normal-
GVD regime (d > 0) when �odd > 0. (b) Contour plot (in log
scale) of the power ratio between two sidebands jA�j

2=jA�j
2 as

a function of d and �odd. While jA�j
2 � jA�j

2 in the usual MI
regime (�2< d < 0; �odd � 0), jA�j

2=jA�j
2 increases with

�odd, implying that the lower sideband grows dominantly for
large �odd.
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frequency from the idler wave, we induce narrow band
anti-Stokes absorption at the idler wavelength [19].

The experimental setup is shown in Fig. 2. Two
external-cavity semiconductor lasers, ECL1 and ECL2,
generated the OPA pump and signal waves at 1542.0 and
1543.8 nm, respectively. After combined by a 1:9 direc-
tional coupler, they were modulated with square-pulse
trains using an electroabsorptive modulator (EAM). The
modulated pulses could be assumed quasi-cw with the
pulse duration of 4.7 ns and the repetition rate of 1.7 MHz.
They were then amplified by an erbium-doped fiber
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FIG. 2. Experimental setup for observing the loss-induced
MI in an OPA configuration. PC: polarization controller,
OBPF: optical bandpass filter, PM: LiNbO3 phase modulator,
PD: photodetector.
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amplifier (EDFA) and launched on a 1-km-long highly
nonlinear dispersion-shifted fiber (HNL-DSF), which
had the propagation loss of 1:1 dB=km, zero-dispersion
wavelength at 1554 nm, and dispersion slope of
0:028 ps=km=nm2. The Brillouin frequency of HNL-
DSF was 9.35 GHz, which was measured by injecting a
strong cw light and observing the beat spectrum between
the cw and scattered Stokes waves. The nonlinear coeffi-
cient � was measured to be 19:5 km�1 W�1 by the four-
wave mixing method [20]. The peak powers of the OPA
pump and signal pulses were estimated to be 1.05 W and
0.34 mWat the input of HNL-DSF, respectively. Note that
the pump wave was located in the normal-GVD regime
(�0:34 ps=km=nm, d � 0:02), so that the standard scalar
MI was strictly inhibited.

We then injected the SBS pump from the opposite end
of HNL-DSF. It was phase modulated with a specially
coded binary pattern at 2 Gbit=s [19], which broadened
the absorption spectrum uniformly over 2 GHz, covering
the entire idler bandwidth (<1 GHz). Finally, we moni-
tored the beat spectrum between the SBS pump and gen-
erated idler wave and tuned the wavelength of the SBS
pump accordingly, so that the frequency difference is
maintained to the Brillouin frequency (9.35 GHz) within
�20-MHz accuracy. By adjusting the incident power of
the SBS pump, we could control the idler loss as shown in
Fig. 3(a). The output signal power was measured using a
high-resolution optical spectrum analyzer.

One problem of the SBS-induced loss is that it inevi-
tably induces a phase shift to the idler wave whenever the
absorption peak deviates slightly from the idler wave-
length [19]. Therefore, although we may observe the OPA
gain increase when injecting the SBS pump, it is quite
ambiguous whether it is caused by the loss itself or by the
SBS-induced phase shift, which changes �k. To avoid this
problem, we have selected the signal wavelength as fol-
lows. First, we turned off the SBS pump and measured the
output signal power as a function of signal wavelength.
Then, from the obtained OPA gain spectrum, plotted in
Fig. 3(b), we decided the signal wavelength to be at
1543.8 nm, the first peak of the gain spectrum. In such
a case, the gain is relatively insensitive to �k, and more-
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FIG. 3. (a) SBS-induced absorption at the idler wavelength
measured as a function of input SBS pump power. (b) Measured
(dots) and theoretical (solid line) OPA gain spectrum without
injecting the SBS pump. The signal wavelength was chosen at
the first peak of the spectrum, so that any SBS-induced phase
shift would only degrade the OPA gain.
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over, a small change in �k would only degrade the gain.
Therefore, any gain enhancement observed when inject-
ing the SBS pump could be attributed clearly to the SBS-
induced loss.

Figure 4 shows the on-off OPA gain measured as a
function of the SBS-induced loss at the idler wavelength.
The on-off OPA gain is defined as the output signal power
when the OPA pump is turned on, relative to that without
the OPA pump. Output signal waveforms are also shown
in the inset for three different values of idler loss:
(i) 0 dB, (ii) 7.9 dB, and (iii) 17.3 dB. We can see that
the OPA gain is enhanced by more than 10 dB when we
apply 17.3-dB absorption at the idler wavelength. The
broken curve shows the theoretical MI gain, exp�Gz� �
exp�2�Pf�z� [Eq. (10)], whereas the solid curve is the
OPA gain jA��z�j

2=jA��0�j
2 calculated analytically from

Eqs. (1)–(3) with�0 � �� � 0,�� � �i, and the bound-
ary condition of A��0� � 0. Note that the OPA gain
converges to the MI gain at large idler loss. Although
no fitting parameter was used in the calculation, we can
see reasonable agreement between the measured and cal-
culated gains in Fig. 4. The quantitative differences
should be attributed to the background fiber loss, polar-
ization mode dispersion, longitudinal fluctuation of the
zero-dispersion wavelength, etc., which are all ignored in
the calculation.

In conclusion, we have found a novel type of MI that
arises in the normal-GVD regime of an optical fiber with
wavelength-dependent loss. Assuming general profiles of
GVD and loss dispersion, we obtained a simple analytical
expression for the MI gain, which reveals that the odd-
order loss dispersion is responsible for such instability.
The underlying physics is that the odd-order loss disper-
sion yields PM-to-AM conversion of the pump perturba-
tion, which interacts with the Kerr-induced AM-to-PM
conversion to provide positive feedback. Observation of
163902-4
the loss-induced MI gain was demonstrated in an OPA
configuration. A large OPA gain was induced in a non-
phase-matched regime of fiber as we applied narrow band
distributed loss at the idler wavelength by using SBS.
These results indicate an exciting possibility of extending
the OPA bandwidth into the non-phase-matched regime
by an elaborate design of both the loss and GVD profiles
of the fiber. For example, unpumped rare-earth-doped
fibers or long-period fiber Bragg gratings can be interest-
ing candidates for realizing ultrabroadband OPA, which
is highly desired in optical communication systems.
Finally, we should note that although we have employed
an optical fiber in the experiment, the analysis should be
applicable to other nonlinear dispersive systems as well
and may find novel application in different branches of
physics.
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